Inorganic Chemistry
Article
Asymmetric Electrophilic Fluorination Using a Chiral Anionic Phase-
Transfer Catalyst. Science 2011, 334, 1681−1684. (d) Ooi, T.;
Uematsu, Y.; Maruoka, K. Asymmetric Strecker Reaction of Aldimines
Using Aqueous Potassium Cyanide by Phase-Transfer Catalysis of
Chiral Quaternary Ammonium Salts with a Tetranaphthyl Backbone. J.
Am. Chem. Soc. 2006, 128, 2548−2549. (e) Sharma, K.;
Wolstenhulme, P. P.; Yeo, D.; Grande-Carmona, F.; Johnston, C. P.;
Tantillo, D. J.; Smith, M. D. Cation-Controlled Enantioselective and
Diastereoselective Synthesis of Indolines: An Autoinductive Phase-
Transfer Initiated 5-endo-trig Process. J. Am. Chem. Soc. 2015, 137,
13414−13424. (f) Shirakawa, S.; Liu, K.; Maruoka, K. Catalytic
Asymmetric Synthesis of Axially Chiral o-Iodoanilides by Phase-
Transfer Catalyzed Alkylations. J. Am. Chem. Soc. 2012, 134, 916−919.
(g) Denmark, S. E.; Weintraub, R. C.; Gould, N. D. J. Effects of
Charge Separation, Effective Concentration, and Aggregate Formation
on the Phase Transfer Catalyzed Alkylation of Phenol. J. Am. Chem.
Soc. 2012, 134, 13415−13429.
(3) (a) Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Solid
Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/
Oil Interface. Science 2010, 327, 68−72. (b) Dinsmore, A. D.; Hsu, M.
F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A.
Colloidosomes: Selectively Permeable Capsules Composed Colloidal
Particles. Science 2002, 298, 1006−1009. (c) Whitesides, G. M.;
Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418−
2421.
(4) Wang, J.-C.; Ma, J.-P.; Liu, Q.-K.; Dong, Y.-B. Cd(II)-MOF-IM:
Post-Synthesis Functionalization of Cd(II)-MOF for Triphase Trans-
fer Catalyst. Chem. Commun. 2016, 52, 6989−6992.
(5) Ding, L.-G.; Yao, B.-J.; Jiang, W.-L.; Li, J.-T.; Fu, Q.-J.; Li, Y.-A.;
Liu, Z.-H.; Ma, J.-P.; Dong, Y.-B. Bifunctional Imidazolium-Based
Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2
Adsorption and Catalytic Property for CO2 Cycloaddition with
Epoxides. Inorg. Chem. 2017, 56, 2337−2344.
(6) (a) Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41,
5262−5284. (b) Moon, H. R.; Lim, D.-W.; Suh, M. P. Fabrication of
Metal Nanoparticles in Metal-Organic Frameworks. Chem. Soc. Rev.
2013, 42, 1807−1824.
MOF-based catalysts for one-pot CuAAC has been reported,
but with organic solvent in N2 atmosphere.14e
CONCLUSION
■
In summary, a facile and practical sequential one-pot catalytic
method for the generation of 1,4-disubstituted triazoles from
halogenated compounds and sodium azide has been developed.
It is different from most previous reports in that the one-pot
reactions catalyzed by the bifunctional solid catalyst of 2 herein
have a certain “greenness” to them, involving a water medium,
air atmosphere, and catalyst reutilization. We expect this
approach to be viable for the construction of many more new
and practical multifunctional composite heterogeneous catalytic
systems for green organic synthesis, and studies toward the
preparation of new heterogeneous catalysts of this type
containing other MOF supports and/or metal species are
underway.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthesis and characterization of L; characterization of
azidated products (for Table 2); “click” reaction products
(for Table 4); one-pot CuAAC products (for Table 5)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
(7) Some recent articles related to active catalytic species loaded
MOF catalysts for the heterogeneous tandem catalysis: (a) Manna, K.;
Zhang, T.; Greene, F. X.; Lin, W. Bipyridine- and Phenanthroline-
Based Metal−Organic Frameworks for Highly Efficient and Tandem
Catalytic Organic Transformations via Directed C−H Activation. J.
Am. Chem. Soc. 2015, 137, 2665−2673. (b) Verde-Sesto, E.; Merino,
Author Contributions
†Y.-H.H and J.-C.W. contributed equally.
Notes
The authors declare no competing financial interest.
́
E.; Rangel-Rangel, E.; Corma, A.; Iglesias, M.; Sanchez, F.
ACKNOWLEDGMENTS
■
Postfunctionalized Porous Polymeric Aromatic Frameworks with an
Organocatalyst and a Transition Metal Catalyst for Tandem
Condensation−Hydrogenation Reactions. ACS Sustainable Chem.
Eng. 2016, 4, 1078−1084. (c) Beyzavi, M. H.; Vermeulen, N. A.;
Howarth, A. J.; Tussupbayev, S.; League, A. B.; Schweitzer, N. M.;
Gallagher, J. R.; Platero-Prats, A. E.; Hafezi, J. F.; Sarjeant, N.; Miller,
A. A.; Chapman, J. T.; Stoddart, K. W.; Cramer, C. J.; Hupp, J. T.;
Farha, O. K. A Hafnium-Based Metal−Organic Framework as a
Nature-Inspired Tandem Reaction Catalyst. J. Am. Chem. Soc. 2015,
137, 13624−13631. (d) Dau, P. V.; Cohen, S. M. A Bifunctional, Site-
Isolated Metal−Organic Framework-Based Tandem Catalyst. Inorg.
Chem. 2015, 54, 3134−3138. (e) Wang, J.-S.; Jin, F.-Z.; Ma, H.-C.; Li,
X.-B.; Liu, M.-Y.; Kan, J.-L.; Chen, G.-J.; Dong, Y.-B. Au@Cu(II)-
MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for
Successive Oxidation-Condensation Reactions. Inorg. Chem. 2016,
55, 6685−6691. (f) Li, Y.-A.; Yang, S.; Liu, Q.-K.; Chen, G.-J.; Ma, J.-
P.; Dong, Y.-B. Pd(0)@UiO-68-AP: Chelating-Directed Bifunctional
Heterogeneous Catalyst for Stepwise Organic Transformations. Chem.
Commun. 2016, 52, 6517−6520. (g) Yang, Q.; Chen, Y.-Z.; Wang, Z.
U.; Xu, Q.; Jiang, H.-L. One-Pot Tandem Catalysis over Pd@MIL-
101: Boosting the Efficiency of Nitro Compound Hydrogenation by
Coupling with Ammonia Borane Dehydrogenation. Chem. Commun.
2015, 51, 10419−10422. (h) Yang, Q.; Xu, Q.; Yu, S.-H.; Jiang, H.-L.
Pd Nanocubes@ZIF-8: Integration of Plasmon-Driven Photothermal
Conversion with a Metal−Organic Framework for Efficient and
We are grateful for financial support from NSFC (Grant Nos.
21671122 and 21475078), the 973 Program (Grant No.
2013CB933800), and the Taishan scholar’s construction
project.
REFERENCES
■
(1) (a) Starks, C. M. Phase-transfer catalysis. I. Heterogeneous
reactions involving anion transfer by quaternary ammonium and
phosphonium salts. J. Am. Chem. Soc. 1971, 93, 195−199. (b) Maruoka,
K.; Ooi, T. Enantioselective Amino Acid Synthesis by Chiral Phase-
Transfer Catalysis. Chem. Rev. 2003, 103, 3013−3028. (c) Dupont, J.;
de Souza, R. F.; Suarez, P. A. Z. Enantioselective Amino Acid Synthesis
by Chiral Phase-Transfer Catalysis. Chem. Rev. 2002, 102, 3667−3692.
(d) Tan, J.; Yasuda, N. Contemporary Asymmetric Phase Transfer
Catalysis: Large-Scale Industrial Applications. Org. Process Res. Dev.
2015, 19, 1731−1746. (e) Maruoka, K. Practical Aspects of Recent
Asymmetric Phase-Transfer Catalysis. Org. Process Res. Dev. 2008, 12,
679−697.
(2) (a) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Quaternary
Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative
Cycloetherification. Science 2010, 328, 1376−1379. (b) Uyanik, M.;
Hayashi, H.; Ishihara, K. High-Turnover Hypoiodite Catalysis for
Asymmetric Synthesis of Tocopherols. Science 2014, 345, 291−294.
(c) Rauniyar, V.; Lackner, A.; Hamilton, G. L.; Toste, F. D.
F
Inorg. Chem. XXXX, XXX, XXX−XXX