Page 5 of 7
Journal of the American Chemical Society
ASSOCIATED CONTENT
Supporting Information
1
2
3
4
5
6
7
8
9
Experimental procedures and characterization data
Hydrogen Atom Transfer: An Invigorating Approach to Free-Radical
Reactions. Curr. Opin. Chem. Biol. 2019, 49, 16–24.
AUTHOR INFORMATION
Corresponding Author
(9) Sandoval, B. A.; Meichan, A. J.; Hyster, T. K. Enantioselective
Hydrogen Atom Transfer: Discovery of Catalytic Promiscuity in
Flavin-Dependent ‘Ene’-Reductases. J. Am. Chem. Soc. 2017, 139,
11313–11316.
*
(10) Biegasiewicz, K. F.; Cooper, S. J.; Gao, X.; Oblinsky, D. G.;
Kim, J. H.; Garfinkle, S. E.; Joyce, L. A.; Sandoval, B. A.; Scholes, G.
D.; Hyster, T. K. Photoexcitation of Flavoenzymes Enables a
Stereoselective Radical Cyclization. Science 2019, 364, 1166–1169.
(11) Goetz, K. P.’ Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil,
L. E.; Jurchescu, O. D. Charge-transfer complexes: new perspectives
on an old class of compounds. J. Mat. Chem. C. 2014, 2, 3065.
(12) (a) Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P.
Synthetic Methods Driven by the Photoactivity of Electron Donor-
Acceptor Complexes. J. Am. Chem. Soc. 2020, 142, 5461-5476. (b) Fu,
M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Photocatalytic
decarboxylative alkylations mediated by triphenylphosphine and
sodium iodide. Science 2019, 363, 1429-1434. (c) Bahamonde, A.;
Melchiorre, P. Mechanism of Stereoselective 훼-alkylation of aldehyde
driven by the photochemical activity of enamines. J. Am. Chem. Soc.
Notes
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support provided by the NIH (R01 GM127703),
the Searle Scholars Foundation, and the Sloan Research
Fellowship.
REFERENCES
2
016, 138, 8019-9030. (d) Woźniak, Ł; Murphy, J. J.; Melchiorre, P.
Photo-organocatalytic Enantioselective Perfluorialkylation of 훽-
ketoesters. J. Am. Chem. Soc. 2015, 137, 5678-5681.
(13) Srikanth, G. S. C.; Castle, S. L. Advances in Radical Conjugate
(1) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals:
Additions. Tetrahedron 2005, 6, 10377–10441.
Reactive Intermediates with Translational Potential. J. Am. Chem. Soc.
2016, 138, 12692–12714.
(14) (a)Sibi, M. P.; Zimmerman, J.; Rheault, T. Enantioselective
Conjugate Radical Addition to β-Acyloxy Acrylate Acceptors: An
Approach to Acetate Aldol-Type Products. Angew. Chem. Int. Ed.
2003, 42, 4521–4523. (b) Ruiz Espelt, L.; McPherson, I. S.; Wiensch,
E. M.; Yoon, T. P. Enantioselective Conjugate Additions of α-Amino
Radicals via Cooperative Photoredox and Lewis Acid Catalysis. J. Am.
Chem. Soc. 2015, 137, 2452–2455. (c) Huo, H.; Harms, K.; Meggers,
E. Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes
via Visible-Light-Activated Photoredox Catalysis with a Chiral
Rhodium Complex. J. Am. Chem. Soc. 2016, 138, 6936–6939. (d)
Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P.
Asymmetric Catalytic Formation of Quaternary Carbons by Iminium
Ion Trapping of Radicals. Nature 2016, 532, 218–222.
(15) (a) Sibi, M. P.; Patil, K. Enantioselective H-Atom Transfer
Reaction:ꢀ A Strategy to Synthesize Formaldehyde Aldol Products.
Org. Lett. 2005, 7, 1453–1456. (b) Sibi, M. P.; Sausker, J. B. The Role
of the Achiral Template in Enantioselective Transformations. Radical
Conjugate Additions to α-Methacrylates Followed by Hydrogen Atom
Transfer. J. Am. Chem. Soc. 2002, 124, 984–991. (c) Aechtner, T.;
Dressel, M.; Bach, T. Hydrogen Bond Mediated Enantioselectivity of
Radical Reactions. Angew. Chem. Int. Ed. 2004, 43, 5849–5851.
(16) Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.;
Stephenson, C. R. J. Engaging Unactivated Alkyl, Alkenyl and Aryl
Iodides in Visible-Light-Mediated Free Radical Reactions. Nat. Chem.
2012, 4, 854.
(2) (a) Sibi, M. P.; Manyem, S.; Zimmerman, J. Enantioselective
Radical Processes. Chem. Rev. 2003, 103, 3263–3296. (b) Wang, Y.;
Wen, X.; Cui, X.; Zhang, X. P. Enantioselective Radical Cyclization
for Construction of 5-Membered Ring Structures by Metalloradical C–
H Alkylation. J. Am. Chem. Soc. 2018, 140, 4792-4796.
(3) Arnold, F. H. Directed Evolution: Bringing New Chemistry to
Life. Angew. Chem. Int. Ed. 2018, 57, 4143–4148.
(4) (a) Liang, J.; Mundorff, E.; Voladri, R.; Jenne, S.; Gilson, L.;
Conway, A.; Krebber, A.; Wong, J.; Huisman, G.; Truesdell, S.;
Lalonde, J. Highly Enantioselective Reduction of a Small Heterocycle
Ketone: Biocatalytic Reduction of Tetrahedyrothiophene-3-one to the
Corresponding (R)-Alcohol. Org. Process Res. Dev. 2010, 14, 188-192.
(b) Chen, K.; Arnold, F. H. Engineering New Catalytic Activities in
Enzymes. Nat. Catal. 2020, 3, 203-213. (c) Huffman, M. A.;
Fryszkowska, A.; Alvizo, O.; Borra-Garske, M.; Campos, K. R.;
Canada, K. A.; Devine, P. N.; Duan, D.; Forstater, J. H.; Grosser, S. T.;
Halsey, H. M.; Hughes, G. J.; Jo, J.; Joyce, L. A.; Kolev, J. N.; Liang,
J.; Maloney, K. M.; Mann, B. F.; Marshall, N. M.; McLaughlin, M.;
Moore, J. C.; Murphy, G. S.; Nawrat, C. C.; Nazor, J.; Novick, S.; Patel,
N. R.; Rodriguez-Granillo, A.; Robaire, S. A.; Sherer, E. C.; Truppo,
M. D.; Whittaker, A. M.; Verma, D.; Xiao, L.; Xu, Y.; Yang, H.Design
of an in vitro biocatalytic cascade for the manufacture of islatravir.
Science 2019, 366, 1255-1259. (d) Schober, M.; MacDermaid, C.;
Ollis, A. A.; Chang, S.; Khan, D.; Hosford, J.; Latham, J.; Ihnken, L.
A. F.; Brown, M. J. B.; Fuerst, D.; Sanganee, M. J.; Roiban, G.-D.
Chiral Synthesis of LSD1 inhibitor GSK2879552 enabled by direction
evolution of an imine reductase. Nat. Catal. 2019, 2, 909-915.
(5) Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.;
Moore, J. C.; Robins, K. Engineering the Third Wave of Biocatalysis.
Nature 2012, 48, 185.
(17) Rondini, S.; Mussini, P. R.; Muttini, P.; Sello, G. Silver as a
powerful electrocatalyst for organic halide reduction: the critical role
of molecular structure. Electrochimica Acta. 2001, 46, 3245-3258.
(18) Lima, C. G. S.; Lima, T. M.; Duarte, C.; Jurberg, I. D.; Paixão,
M. W. Organic Synthesis Enabled by Light-Irradiation of EDA
Complexes: Theoretical Background and Synthetic Applications. ACS
Catal. 2016, 6, 1389-1407.
(6) Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M.
(19) Kohli, R. M.; Massey, V. The Oxidative Half-Reaction of Old
M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J. C.; Ward, T. R.
Artificial Metalloenzymes: Reaction Scope and Optimization
Strategies. Chem. Rev. 2018, 118, 142–231.
Yellow Enzyme THE ROLE OF TYROSINE 196. J. Biol. Chem. 1998,
2
73, 32763–32770.
(20) Baier, J.; Maisch, T.; Maier, M.; Engle, E. Landthaler, M.;
Bäumler. Singlet Oxygen Geneation by UVA Light Exposure of
Endogenous Photosensitizer. BioPhys J. 2006, 91, 1452-1459.
(7) Hyster, T. K. Radical Biocatalysis: Using Non-Natural Single
Electron Transfer Mechanisms to Access New Enzymatic Functions.
Synlett 2020, 31, 248–254.
(8) Nakano, Y.; Biegasiewicz, K. F.; Hyster, T. K. Biocatalytic
(21) Using tryptic digestion coupled with LC-MS/MS, we found that
5
ACS Paragon Plus Environment