March 2009
255
eral procedure, 2i (50 mg, 0.18 mmol) was treated with 1a (2.5 mg,
0.0088 mmol) and Oxone® (434 mg, 0.71 mmol) in TFE–H2O (1 : 2, 2 ml)
to give 2-(3,6-dioxocyclohexa-1,4-dienylmethyl)isoindole-1,3-dione (3i)55)
(46 mg, 98%) as yellow needles, mp 169—172 °C (ethyl acetate–hexane). IR
(neat) cmꢁ1: 1767, 1711, 1659, 1467, 1419, 1391. 1H-NMR (270 MHz,
CDCl3) d: 4.72 (2H, d, Jꢃ1.9 Hz), 6.37 (1H, q, Jꢃ2.2 Hz), 6.75 (1H, dd,
Jꢃ10.3, 2.2 Hz), 6.83 (1H, d, Jꢃ10.3 Hz), 7.75—7.93 (2H, m), 7.87—7.93
(2H, m). 13C-NMR (67.5 MHz, CDCl3) d: 28.9, 123.6 (2), 131.1, 131.6,
134.4 (3), 136.4 (2), 142.4, 167.3 (2), 186.0, 186.5. HR-MS m/z: 267.04932
(Calcd for C15H9NO4 (Mꢂ): 267.05316).
4.80 (2H, s), 6.79 (1H, dd, Jꢃ8.8, 3.0 Hz), 6.91 (1H, d, Jꢃ8.8 Hz), 6.94 (1H,
t, Jꢃ3.0 Hz), 7.51 (1H, s), 7.70—7.75 (2H, m), 7.82—7.88 (2H, m). 13C-
NMR (75 MHz, CDCl3) d: 37.2, 55.8, 115.9, 116.1, 119.2, 122.9, 123.6 (2),
131.6, 134.3 (3), 148.6, 153.4, 168.8 (2). Anal. Calcd for C16H13NO4: C,
67.84; N, 4.94; H, 4.63. Found: C, 67.53; N, 5.25; H, 4.66. HR-MS m/z:
283.08138 (Calcd for C16H13NO4 (Mꢂ): 283.08446).
Catalytic Hypervalent Iodine Oxidation of 2a, General Procedure
A
suspension of 2a (1.0 g, 4.2 mmol), 1a (58 mg, 0.2 mmol) and Oxone®
(1.03 g, 16.8 mmol) in TFE–H2O (1 : 2, 42 ml) was stirred at room tempera-
ture for 45 min. The mixture was diluted with ethyl acetate and washed with
water. The organic layer was then washed with aqueous saturated sodium bi-
carbonate solution and dried, concentrated to give pure 3,6-dioxocyclohexa-
1,4-dienylmethyl 2,2-dimethylpropanoate (3a) (931 mg, quant) as yellow
crystals; mp 71—72 °C (ethyl acetate–hexane). IR (KBr) cmꢁ1: 1735, 1658,
1484, 1459, 1440. 1H-NMR (270 MHz, CDCl3) d: 1.27 (9H, s), 4.99 (2H, d,
Jꢃ1.9 Hz), 6.64—6.68 (1H, m), 6.74—6.88 (2H, m). 13C-NMR (75 MHz,
CDCl3) d: 27.2 (3), 38.9, 59.4, 131.1, 136.5, 136.6, 143.6, 177.5, 186.1,
186.9. Anal. Calcd for C12H14O4: C, 64.85; H, 6.35. Found: C, 64.71; H,
5.86. HR-MS m/z: 222.08846 (Calcd for C12H14O4 (Mꢂ): 222.08921). The
alkaline solution was acidified by 10% hydrochloric acid solution and ex-
tracted with ethyl acetate. The organic layer was dried and concentrated to
give recovered 1a (44 mg, 76%). It can be used after recrystallization from
diethyl ether–hexane.
Acknowledgments The authors wish to thank Professor Yasuyuki Kita
for helpful discussion.
References and Notes
1) Review: Stang P. J., Zhdankin V. V., Chem. Rev., 96, 1123—1178
(1996).
2) Review: Kita Y., Takada T., Tohma H., Pure Appl. Chem., 68, 627—
630 (1996).
3) Review: Kitamura T., Fujiwara Y., Org. Prep. Proced. Int., 29, 409—
458 (1997).
4) “Hypervalent Iodine in Organic Synthesis,” ed. by Varvoglis A., Acad-
emic Press, San Diego, 1996.
5) Review: Varvoglis A., Tetrahedron, 53, 1179—1255 (1997).
6) Review: Zhdankin V. V., Rev. Heteroatom Chem., 17, 133—151
(1997).
7) Review: Muraki T., Togo H., Yokoyama M., Rev. Heteroatom Chem.,
17, 213—243 (1997).
Catalytic Hypervalent Iodine Oxidation of 2b Following the general
procedure, 2b (124 mg, 1 mmol) was treated with 1a (14 mg, 0.05 mmol) and
Oxone® (2.46 g, 4 mmol) in TFE–H2O (1 : 2, 10 ml) to give 1,4-benzoquinone
(3b) (84 mg, 78%) as yellow crystals, which was directly identical to the
commercial sample supplied by Nacalai Chemicals, Ltd.
8) Review: Varvoglis A., Spyroudis S., Synlett, 1998, 221—232 (1998).
9) Review: Wirth T., Hirt U. H., Synthesis, 1999, 1271—1287 (1999).
10) Ochiai M., “Chemistry of Hypervalent Compounds,” Chap. 12, ed. by
Akiba K., Wiley-VCH, New York, 1999.
Catalytic Hypervalent Iodine Oxidation of 2c Following the general
procedure, 2c (41 mg, 0.3 mmol) was treated with 1a (4 mg, 0.015 mmol)
and Oxone® (738 mg, 1.2 mmol) in TFE–H2O (1 : 2, 3 ml) to give 3b (31 mg,
97%) as yellow crystals.
11) Review: Wirth T., Angew. Chem., Int. Ed., 40, 2812—2814 (2001).
12) Review: Zhdankin V. V., Stang P. J., Chem. Rev., 102, 2523—2584
(2002).
13) “Hypervalent Iodine Chemistry,” ed. by Wirth T., Springer-Verlag,
Berlin, Heidelberg, 2003.
14) Review: Wirth T., Angew. Chem., Int. Ed., 44, 3656—3665 (2005).
15) Review: Moriarty R. M., J. Org. Chem., 70, 2893—2903 (2005).
16) Review: Dohi T., Kita Y., Kagaku (Kyoto), 61, 68—69 (2006).
17) Review: Richardson R. D., Wirth T., Angew. Chem., Int. Ed., 45,
4402—4404 (2006).
18) Review: Ochiai M., Miyamoto K., Eur. J. Org. Chem., 2008, 4229—
4239 (2008).
19) Dohi T., Maruyama A., Yoshimura M., Morimoto K., Tohma H., Kita
Y., Angew. Chem., Int. Ed., 44, 6193—6196 (2005).
20) Ochiai M., Takeuchi Y., Katayama T., Sueda T., Miyamoto K., J. Am.
Chem. Soc., 127, 12244—12245 (2005).
21) Yamamoto Y., Togo H., Synlett, 2006, 798—800 (2006).
22) Dohi T., Maruyama A., Minamitsuji Y., Takenaga N., Kita Y., Chem.
Commun., 2007, 1224—1226 (2007).
23) Richardson R. D., Page T. K., Altermann S., Paradine S. M., French A.
N., Wirth T., Synlett, 2007, 538—542 (2007).
24) Akiike J., Yamamoto Y., Togo H., Synlett, 2007, 2168—2172 (2007).
25) Yamamoto Y., Kawano Y., Toy P. H., Togo H., Tetrahedron, 63, 4680—
4687 (2007).
26) Richardson R. D., Desaize M., Wirth T., Chem. Eur. J., 13, 6745—
6754 (2007).
27) Moroda A., Togo H., Synthesis, 2008, 1257—1261 (2008).
28) Thottumkara A. P., Bowsher M. S., Vinod T. K., Org. Lett., 7, 2933—
2936 (2005).
29) Schulze A., Giannis A., Synthesis, 2006, 257—260 (2006).
30) Dohi T., Minamitsuji Y., Maruyama A., Hirose S., Kita Y., Org. Lett.,
10, 3559—3562 (2008).
31) “The Chemistry of the Quinonoid Compounds,” Vol. 2, Parts 1 and 2,
ed. by Patai S., Rappoport Z., John Wiley & Sons, Chichester, 1988.
32) “Naturally Occurring Quinones IV Recent Advances,” ed. by Thom-
son R. H., Blackie Academic & Professional, London, 1997.
33) Dudfield P. J., “Comprehensive Organic Synthesis,” Vol. 7, ed. by
Trost B. M., Fleming I., Elsevier, Oxford, 1991, pp. 345—356.
34) Review: Gallagher P. T., Contemp. Org. Synth., 3, 433—446 (1996).
35) Review: Akai S., Kita Y., Org. Prep. Proced. Int., 30, 603—629
(1998).
Catalytic Hypervalent Iodine Oxidation of 2d Following the general
procedure, 2d (50 mg, 0.3 mmol) was treated with 1a (4 mg, 0.015 mmol)
and Oxone® (738 mg, 1.2 mmol) in TFE–H2O (1 : 2, 3 ml) to give 3b (29 mg,
88%) as yellow crystals.
Catalytic Hypervalent Iodine Oxidation of 2e Following the general
procedure, 2e (180 mg, 1 mmol) was treated with 1a (14 mg, 0.05 mmol) and
Oxone® (2.46 g, 4 mmol) in TFE–H2O (1 : 2, 10 ml) to give 2-tert-butyl-1,4-
benzoquinone (3e) (163 mg, quant) as orange crystals, which was directly
identical to the commercial sample supplied by TCI CO., Ltd.
Catalytic Hypervalent Iodine Oxidation of 2f Following the general
procedure, 2f (292 mg, 1 mmol) was treated with 1a (14 mg, 0.05 mmol) and
Oxone® (2.46 g, 4 mmol) in TFE–H2O (1 : 2, 10 ml) to give 2,5-bis-(1,1-di-
methylbutyl)-1,4-benzoquinone (3f) (276 mg, quant) as yellow crystals, mp
61—62 °C (hexane). IR (KBr) cmꢁ1: 1648, 1597, 1470, 1461, 1449, 1366.
1H-NMR (270 MHz, CDCl3) d: 0.84 (6H, t, Jꢃ7.0 Hz), 0.97—1.15 (4H, m),
1.22 (12H, s), 1.65—1.74 (4H, m), 6.42 (2H, s). 13C-NMR (67.5 MHz,
CDCl3) d: 14.6 (2), 18.4 (2), 27.4 (4), 38.1 (2), 43.1 (2), 134.9 (2), 153.5
(2), 188.3 (2). Anal. Calcd for C18H28O2: C, 78.21; H, 10.21. Found: C,
78.41; H, 10.14. HR-MS m/z: 276.20919 (Calcd for C18H28O2 (Mꢂ):
276.20893).
Catalytic Hypervalent Iodine Oxidation of 2g Following the gen-
eral procedure, 2g (59 mg, 0.15 mmol) was treated with 1a (2 mg,
0.0075 mmol) and Oxone® (369 mg, 0.6 mmol) in TFE–H2O (1 : 2, 1.5 ml)
to give 2-(tert-butyldiphenylsilyloxymethyl)-1,4-benzoquinone (3g) (57 mg,
quant) as yellow solid, mp 76—79 °C (ethyl acetate–hexane). IR (KBr)
cmꢁ1: 1656, 1598, 1470, 1428. 1H-NMR (270 MHz, CDCl3) d: 1.10 (9H, s),
4.58 (2H, d, Jꢃ2.4 Hz), 6.68 (1H, d, Jꢃ10.0 Hz), 6.73 (1H, dd, Jꢃ10.0,
2.2 Hz), 7.04 (1H, q, Jꢃ2.4 Hz), 7.36—7.49 (6H, m), 7.60—7.73 (4H, m).
13C-NMR (67.5 MHz, CDCl3) d: 19.4, 26.9 (3), 59.9, 127.8 (4), 129.9 (2),
130.5, 132.4 (2), 135.3 (4), 136.3, 136.4, 147.9, 186.9, 187.5. HR-MS m/z:
376.14506 (Calcd for C23H24O3Si (Mꢂ): 376.14948).
Catalytic Hypervalent Iodine Oxidation of 2h Following the general
procedure, 2h (48 mg, 0.27 mmol) was treated with 1a (4 mg, 0.013 mmol)
and Oxone® (659 mg, 1.07 mmol) in TFE–H2O (1 : 2, 2.7 ml) to give 2-
azidomethyl-1,4-benzoquinone (3h) (42 mg, 95%) as yellow needles, mp
65—66.5 °C (ethyl acetate–hexane). IR (KBr) cmꢁ1: 1661, 1637, 1602,
1425, 1361. 1H-NMR (300 MHz, CDCl3) d: 4.29 (2H, d, Jꢃ1.4 Hz), 6.75—
6.84 (3H, m). 13C-NMR (75 MHz, CDCl3) d: 48.5, 132.6, 136.3, 136.7,
142.6, 186.1, 186.6. Anal. Calcd for C7H5N3O2: C, 51.54; H, 3.09; N, 25.76.
Found: C, 51.63; H, 3.45; N, 24.99; HR-MS m/z: 163.03585 (Calcd for
C7H5N3O2 (Mꢂ): 163.03818).
36) Review: Owton W. M., J. Chem. Soc., Perkin Trans. 1, 1999, 2409—
Catalytic Hypervalent Iodine Oxidation of 2i Following the gen-