Communications
aqueous layer was extracted with ethyl acetate (3 1 mL). The
combined extracts were dried over magnesium sulfate and concen-
trated in vacuo to give the corresponding ketones 8.
Post-treatment procedure B: extract with scCO2: The resin beads
were extracted with supercritical (sc) carbon dioxide (296 atm, 408C,
24 min) to afford the corresponding ketones 8. The recovered catalyst
beads were reused without any further purification or activation.
[10] For recent examples of transition-metal complexes supported on
polystyrene–polyethylene glycol (PS-PEG) resins for organic
transformations, see: a) Y. Nakai, Y. Uozumi, Org. Lett. 2005, 7,
291 – 293; b) Y. Uozumi, H. Tanaka, K. Shibatomi, Org. Lett.
2004, 6, 281 – 283; c) Y. Uozumi, Y. Nakai, Org. Lett. 2002, 4,
2997 – 3000; d) Y. Uozumi, K. Shibatomi, J. Am. Chem. Soc.
2001, 123, 2919 – 2920, and references therein.
[11] For reviews, see: a) M. Krµlik, A. Bioffis, J. Mol. Catal. A 2001,
177, 113 – 138; b) J. H. J. Kluytmans, A. P. Markusse, B. F. M.
Kuster, G. B. Marin, J. C. Schouten, Catal. Today 2000, 57, 143 –
155; c) T. Mallat, A. Baiker, Catal. Today 1994, 19, 247 – 284.
[12] For recent examples of resin-supported Pt catalysts, see: a) H.
Hagio, M. Sugiura, S. Kobayashi, Synlett 2005, 813 – 816; b) P.
Centomo, M. Zecca, S. Lora, G. Vitulli, A. M. Caporusso, M. L.
Tropeano, C. Milone, S. Galvagno, B. Corain, J. Catal. 2005, 229,
283 – 297; c) N. P. Socolova, Colloids Surf. A 2004, 239, 125 – 127;
d) R. Drake, R. Dunn, D. C. Sherrington, S. J. Thomson, J. Mol.
Catal. A 2001, 177, 49 – 69; e) Q. J. Miao, Z.-P. Fang, G. P. Cai,
Catal. Commun. 2003, 4, 637 – 639; f) R. Anderson, K. Griffin, P.
Johnson, P. L. Alsteres, Adv. Synth. Catal. 2003, 345, 517 – 523.
[13] P. J. M. Dijkgraaf, M. J. M. Rijk, J. Meuldijk, K. van der Wiele, J.
Catal. 1988, 112, 329 – 336.
Received: September 22, 2006
Published online: December 13, 2006
Keywords: alcohols · heterogeneous catalysis · oxidation ·
.
platinum · polymers
[1] For recent reviews, see: a) D. Astruc, F. Lu, R. Aranzaes, Angew.
Chem. 2005, 117, 8062 – 8083; Angew. Chem. Int. Ed. 2005, 44,
7852 – 7872; b) T. Mallat, A. Baiker, Chem. Rev. 2004, 104, 3037 –
3058; c) R. A. Anderson, K. Griffin, P. Johnson, P. L. Alsteres,
Adv. Synth. Catal. 2003, 345, 517 – 523.
[2] For examples of the Pd-catalyzed aerobic oxidation of alcohols
under homogeneous conditions, see: a) K. P. Peterson, R. C.
Larock, J. Org. Chem. 1998, 63, 3185 – 3189; b) T. Nishimura, T.
Onoue, K. Ohe, S. Uemura, Tetrahedron Lett. 1998, 39, 6011 –
6014; c) T. Nishimura, T. Onoue, K. Ohe, S. Uemura, J. Org.
Chem. 1999, 64, 6750 – 6755; d) N. Kakiuchi, Y. Maeda, T.
Nishimura, S. Uemura, J. Org. Chem. 2001, 66, 6620 – 6625;
e) B. A. Steinhoff, S. R. Fix, S. S. Stahl, J. Am. Chem. Soc. 2002,
124, 766 – 767; f) S. S. Stahl, J. L. Thorma, R. C. Nelson, M. A.
Kozee, J. Am. Chem. Soc. 2001, 123, 7188 – 7189; g) D. R. Jensen,
J. S. Pugsley, M. S. Sigman, J. Am. Chem. Soc. 2001, 123, 7475 –
7476; h) M. S. Sigman, D. R. Jensen, Acc. Chem. Res. 2006, 39,
221 – 229.
[3] For aerobic oxidation in organic solvents, see: a) M. S. Kwon, N.
Kim, C. M. Park, J. S. Lee, K. Y. Kang, J. Park, Org. Lett. 2005, 7,
1077 – 1079; b) N. Kakiuchi, Y. Maeda, T. Nishimura, S. Uemura,
J. Org. Chem. 2001, 66, 6620 – 6625.
[4] For aerobic oxidation under neat conditions, see: a) D. I.
Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F.
Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight,
G. J. Hutchings, Science 2006, 311, 362 – 365; b) K. Yamaguchi,
N. Mizuno, Angew. Chem. 2002, 114, 4720 – 4724; Angew. Chem.
Int. Ed. 2002, 41, 4538 – 4542.
[5] a) Y. Uozumi, R. Nakao, Angew. Chem. 2003, 115, 204 – 207;
Angew. Chem. Int. Ed. 2003, 42, 194 – 197; b) R. Nakao, H. Rhee,
Y. Uozumi, Org. Lett. 2005, 7, 163 – 165.
[6] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am.
Chem. Soc. 2004, 126, 10657 – 10666.
[7] a) G.-J. ten Brink, I. W. C. E. Arends, R. A. Sheldon, Science
2000, 287, 1636 – 1639; b) G.-J. ten Brink, I. W. C. E. Arends, M.
Hoogenraad, G. Verspui, R. A. Sheldon, Adv. Synth. Catal. 2003,
345, 1341 – 1352; c) G.-J. ten Brink, I. W. C. E. Arends, M.
Hoogenraad, G. Verspui, R. A. Sheldon, Adv. Synth. Catal.
2003, 345, 497 – 505.
[8] A. Abad, P. Concepción, A. Corma, H. García, Angew. Chem.
2005, 117, 4134 – 4137; Angew. Chem. Int. Ed. 2005, 44, 4066 –
4069.
[14] For an example, see the material safety data sheet (MSDS) for
platinum on activated carbon.
[15] Additional high-resolution TEM and EDS/SEM data are
provided in the Supporting Information.
[16] For earlier examples of size-controlled metal nanoparticles, see:
a) A. B. R. Mayer, Mater. Sci. Eng. C 1998, 6, 155 – 166 (review);
b) A. Biffis, A. A. DꢀArchivio, K. Jerabek, G. Schmid, B. Corain,
Adv. Mater. 2000, 12, 1909 – 1912; c) D.-W. Kim, J.-M. Lee, C.
Oh, D.-S. Kim, S.-G. Oh, J. Colloid Interface Sci. 2006, 297, 365 –
369 (on polymer surface); d) L. M. Bronstein, D. M. Cherny-
shov, I. O. Volkov, M. G. Ezernitskaya, P. M. Valetsky, V. G.
Matveeva, E. M. Sulman, J. Catal. 2000, 196, 302 – 314 (in
micelles); for examples of metal nanoparticles with narrow
distribution dispersed on the surface of films, see: e) S. T. Selvan,
J. P. Spatz, H.-A. Klok, M. Mꢁller, Adv. Mater. 1998, 10, 132 – 134
(on film surface); f) M. K. Corbierre, J. Beerens, J. Beauvais,
R. B. Lennox, Chem. Mater. 2006, 18, 2628 – 2631 (on film
surface); g) J. J. Watkins, T. J. McCarthy, Chem. Mater. 1995, 7,
1991 – 1994 (on a soluble polymer matrix); h) M. K. Corbierre,
N. S. Cameron, M. Sutton, S. G. Mochrie, L. B. Lurio, A. Rꢂhm,
R. B. Lennox, J. Am. Chem. Soc. 2001, 123, 10411 – 10412 (on a
soluble polymer matrix).
[17] Total loading of Pt species (0.02 mmol) was 1212 Pt atoms; the
number of surface atoms was estimated from the average
diameter of the particles.
[18] Control experiments were carried out at 60 and 1608C without
Pt species: the aerobic oxidation of 6a did not proceed at 608C at
all, whereas at 1608C under neat conditions 8a was obtained in
64% yield (24 h; not optimized); Y. Uozumi, Y. M. A. Yamada,
unpublished results.
[19] The obtained 2-octanone (Table 1, entry 23) was not contami-
nated with platinum residue (checked by inductively coupled
plasma (ICP) analysis). Over 99.9% of Pt was retained in the
resin: ICP analysis showed that leaching of Pt to the aqueous
solution was less than 1 ppm, and the aqueous filtrate did not
showany catalytic activity.
[9] After our reports on the Pd-catalyzed oxidation (reference [5])
had appeared, similar immobilized polymer catalysts were
reported: a) B. Karimi, A. Zamani, J. H. Clark, Organometallics
2005, 24, 4695 – 4698; b) Z. Hou, N. Theyssen, A. Brinkmann, W.
Leitner, Angew. Chem. 2005, 117, 1370 – 1373; Angew. Chem.
Int. Ed. 2005, 44, 1346 – 1349.
[20] A referee has argued that the oxidation with leached homoge-
neous platinum species is still plausible as the metal species may
redeposit back on the heterogeneous surface. For a recent
review, see: N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv.
Synth. Catal. 2006, 348, 609 – 679, and references therein.
706
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 704 –706