Communication
Catalysis Science & Technology
functional groups easily undergo decomposition in conven-
tional batch reactions. Therefore, biaryls bearing electrophilic
functional groups on both aromatic rings were synthesized in
flow. Furthermore, a triaryl compound having one bromine
atom on one of the aromatic rings was also synthesized via
the lithiation of 4,4′-dibromobiphenyl, although such a
transformation is very difficult to achieve using conventional
batch reactors because of the formation of a significant
amount of dilithiated species (Table 1).
( j) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan
and D. T. McQuade, Chem. Rev., 2007, 107, 2300–2318; (k) B.
Ahmed-Omer, J. C. Brandt and T. Wirth, Org. Biomol. Chem.,
2007, 5, 733–740; (l) P. Watts and C. Wiles, Chem. Commun.,
2007, 443–467; (m) T. Fukuyama, M. T. Rahman, M. Sato
and I. Ryu, Synlett, 2008, 151–163; (n) R. L. Hartman and
K. F. Jensen, Lab Chip, 2009, 9, 2495–2507; (o) J. P.
McMullen and K. F. Jensen, Annu. Rev. Anal. Chem., 2010, 3,
19–42; (p) J. Yoshida, H. Kim and A. Nagaki, ChemSusChem,
2011, 4, 331–340; (q) C. Wiles and P. Watts, Green Chem.,
2012, 14, 38–54; (r) A. Kirschning, L. Kupracz and J. Hartwig,
Chem. Lett., 2012, 41, 562–570; (s) D. T. McQuade and P. H.
Seeberger, J. Org. Chem., 2013, 78, 6384–6389; (t) K. S. Elvira,
X. C. Solvas, R. C. R. Wootton and A. J. DeMello, Nat. Chem.,
2013, 5, 905–915; (u) J. C. Pastre, D. L. Browne and S. V. Ley,
Chem. Soc. Rev., 2013, 42, 8849–8869; (v) I. R. Baxendale,
J. Chem. Technol. Biotechnol., 2013, 88, 519–552; (w) J.
Yoshida, A. Nagaki and D. Yamada, Drug Discovery Today:
Technol., 2013, 10, e53–e59; (x) T. Fukuyama, T. Totoki and
I. Ryu, Green Chem., 2014, 16, 2042–2050.
2
0
Lastly, we applied the presented method to the synthesis
2
1
of adapalene, which is used in the treatment of acne, psori-
asis, and photoaging. The coupling of lithium [3-(1-
adamantyl)-4-methoxyphenyl]trimethoxyborate and methyl
6
-iodo-2-naphthoate was carried out in the monolith reactor
and the desired product was produced in 86% yield (Fig. 5).
A scaled-up synthesis was also achieved by simply extending
the operation time to 21 h. The desired product was obtained
in gram scale (1.55 g) without any appreciable decrease in
the catalytic activity. Finally, the hydrolysis with NaOH in 1,2-
propanediol gave the corresponding adapalene in 89% yield.
3
Some selected recent examples: (a) D. Cantillo, M.
Baghbanzadeh and C. O. Kappe, Angew. Chem., Int. Ed.,
Conclusions
2
012, 51, 10190–10193; (b) W. Shu and S. L. Buchwald,
In conclusion, an efficient synthesis method of asymmetrical
biaryls was developed by integrating lithiation, borylation,
and Suzuki–Miyaura coupling using a flow reactor packed
with a polymer monolith containing an immobilized Pd cata-
lyst. The present method was successfully used for various
coupling reactions including the synthesis of adapalene. Fur-
ther work is in progress to explore the full scope of this use-
ful transformation and its synthetic applications.
Angew. Chem., Int. Ed., 2012, 51, 5355–5358; (c) F. Lévesque
and P. H. Seeberger, Angew. Chem., Int. Ed., 2012, 51,
1706–1709; (d) K. C. Basavaraju, S. Sharma, R. A. Maurya
and D. P. Kim, Angew. Chem., Int. Ed., 2013, 52, 6735–6738;
(e) C. Brancour, T. Fukuyama, Y. Mukai, T. Skrydstrup and I.
Ryu, Org. Lett., 2013, 15, 2794–2797; ( f ) J. D. Nguyen, B.
Reiß, C. Dai and C. R. J. Stephenson, Chem. Commun.,
2013, 49, 4352–4354; (g) C. Battilocchio, J. M. Hawkins and
S. V. Ley, Org. Lett., 2013, 15, 2278–2281; (h) A. S. Kleinke
and T. F. Jamison, Org. Lett., 2013, 15, 710–713; (i) K. Asano,
Y. Uesugi and J. Yoshida, Org. Lett., 2013, 15, 2398–2401; ( j)
L. Guetzoyan, N. Nikbin, I. R. Baxendale and S. V. Ley,
Chem. Sci., 2013, 4, 764–769; (k) S. Fuse, Y. Mifune and T.
Takahashi, Angew. Chem., Int. Ed., 2014, 53, 851–855; (l) Z.
He and T. F. Jamison, Angew. Chem., Int. Ed., 2014, 53,
3353–3357; (m) A. Nagaki, Y. Takahashi and J. Yoshida,
Chem. – Eur. J., 2014, 20, 7931–7934.
Notes and references
1
Books on flow microreactor synthesis: (a) W. Ehrfeld, V.
Hessel and H. Löwe, Microreactors, Wiley-VCH, Weinheim,
Germany, 2000; (b) V. Hessel, S. Hardt and H. Löwe,
Chemical Micro Process Engineering, Wiely-VCH, Weinheim,
Germany, 2004; (c) V. Hessel, A. Renken, J. C. Schouten and
J. Yoshida, Micro Precess Engineering, Wiley-Blackwell,
Chichester, United Kingdom, 2009; (d) T. Wirth,
Microreactors in Organic Chemistry and Catalysis, Wiley, New
York, United States, 2013.
4 (a) A. Nagaki, H. Kim and J. Yoshida, Angew. Chem., Int. Ed.,
2008, 47, 7833–7836; (b) A. Nagaki, H. Kim and J. Yoshida,
Angew. Chem., Int. Ed., 2009, 48, 8063–8065; (c) A. Nagaki, H.
Kim, Y. Moriwaki, C. Matsuo and J. Yoshida, Chem. – Eur. J.,
2010, 16, 11167–11177; (d) H. Kim, A. Nagaki and J. Yoshida,
Nat. Commun., 2011, 2, 264; (e) Y. Tomida, A. Nagaki and J.
Yoshida, J. Am. Chem. Soc., 2011, 133, 3744–3747; ( f ) A.
Nagaki, C. Matsuo, S. Kim, K. Saito, A. Miyazaki and J.
Yoshida, Angew. Chem., Int. Ed., 2012, 51, 3245–3248; (g) A.
Nagaki, D. Ichinari and J. Yoshida, J. Am. Chem. Soc.,
2014, 136, 12245–12248; (h) A. Nagaki, Y. Tsuchihashi, S.
Haraki and J. Yoshida, Org. Biomol. Chem., 2015, 13,
7140–7145; (i) A. Nagaki, K. Imai, S. Ishiuchi and J. Yoshida,
Angew. Chem., Int. Ed., 2015, 54, 1914–1918.
2
Reviews on flow microreactor synthesis: (a) K. Jähnisch, V.
Hessel, H. Löwe and M. Baerns, Angew. Chem., Int. Ed.,
2
004, 43, 406–446; (b) G. N. Doku, W. Verboom, D. N.
Reinhoudt and A. Van den Berg, Tetrahedron, 2005, 61,
733–2742; (c) J. Yoshida, A. Nagaki, T. Iwasaki and S. Suga,
2
Chem. Eng. Technol., 2005, 28, 259–266; (d) P. Watts and S. J.
Haswell, Chem. Soc. Rev., 2005, 34, 235–246; (e) K. Geyer,
J. D. C. Codée and P. H. Seeberger, Chem. – Eur. J., 2006, 12,
8
434–8442; ( f ) A. J. DeMello, Nature, 2006, 442, 394–402; (g)
H. Song, D. L. Chen and R. F. Ismagilov, Angew. Chem., Int.
Ed., 2006, 45, 7336–7356; (h) J. Kobayashi, Y. Mori and S.
Kobayashi, Chem. – Asian J., 2006, 1, 22–35; (i) M. Brivio, W.
Verboom and D. N. Reinhoudt, Lab Chip, 2006, 6, 329–344;
5 (a) F. Diederich and P. J. Stang, Metal-Catalyzed Cross-
Coupling Reactions, Wiley-VCH, New York, United States,
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2016