LETTER
Synthesis of the Naturally Occurring (–)-1,3,5-Tri-O-Caffeoylquinic Acid
1519
rated from the organic layer and is extracted with EtOAc (4×). The
combined organic layers are washed with H2O (3×), brine (1×), and
are dried on MgSO4. The solids are filtered off using gravity filtra-
tion, and the filtrate is concentrated under reduced pressure by rota-
ry evaporation to give 5 mg of natural product 1 in 88% crude yield
as a foamy brown solid; [a]D23 –19.0 (c 0.10, MeOH). 1H NMR (600
MHz, MeOD): d = 7.64 (d, J = 16.2 Hz, 1 H), 7.56 (d, J = 15.6 Hz,
1 H), 7.52 (d, J = 16.2 Hz, 1 H), 7.08 (d, J = 1.8 Hz, 1 H), 6.98 (dd,
J = 8.4, 1.8 Hz, 1 H), 6.97 (d, J = 2.4 Hz, 1 H), 6.85 (d, J = 1.8 Hz,
1 H), 6.79 (d, J = 8.4 Hz, 1 H), 6.79 (dd, J = 8.4, 1.8 Hz, 1 H), 6.65
(d, J = 8.4 Hz, 1 H), 6.65 (dd, J = 8.4, 2.4 Hz, 1 H), 6.55 (d, J = 8.4
Hz, 1 H), 6.34 (d, J = 15.6 Hz, 1 H), 6.24 (d, J = 16.2 Hz, 1 H), 6.19
(d, J = 15.8 Hz, 1 H), 5.58 (td, J = 10.2, 4.2 Hz, 1 H), 5.46 (q,
J = 3.3 Hz, 1 H), 3.99 (dd, J = 10.2, 3.3 Hz, 1 H), 2.91 (dt, J = 15.9,
3.3 Hz, 1 H), 2.67 (ddd, J = 13.2, 4.2, 3.3 Hz, 1 H), 2.42 (dd,
J = 15.9, 3.3 Hz, 1 H), 2.01 (dd, J = 13.2, 10.2 Hz, 1 H). 13C NMR
(225 MHz, MeOD): d = 174.1, 168.8 (2 C), 167.8, 149.7 (2 C),
149.4, 148.0, 147.4 (2 C), 146.9 (2 C), 146.5, 127.8, 127.5 (2 C),
123.1 (2 C), 122.2, 116.6 (3 C), 116.1, 115.5, 115.3 (2 C), 115.1,
115.0, 80.7, 72.9, 72.2, 71.2, 38.3, 32.9. IR (thin film): 3279, 2923,
1733, 1699, 1603, 1260 cm–1. MS m/z (%) = 701 (31), 633 (41), 527
(42), 365 (100). ESI+-HRMS: m/z calcd for C34H30O15Na [M +
Na]+: 701.1482; found: 701.1526.
Hope Pharmaceuticals Inc. In addition, the methyl ester of
1 showed comparable Rnase H inhibition. These results
will be published elsewhere.
Table 1 Conformation and J Values of Tricaffeoyl Esters 8 and 9
Hf
Hg
Hb
OR1
Hb
OR1
Hg
Hf
O
O
Hd
Hd
OR1
OH
Hc
MeO
Hc
MeO
Ha
Ha
He
R1O
He
R1O
OR1
9
OH
8
Chemical shift Spin multiplicity J Values (Hz)
(d, ppm)
8
8
8
8
8
8
8
Ha
Hb
Hc
Hd
He
Hf
Hg
5.76
ddd
dd
m
10.0, 10.0, 4.0
5.21
10.0, 3.5
4.51–4.48
2.81–2.73
2.81–2.73
2.44
–
m
–
m
–
dd
dd
15.5, 3.5
13.5, 10.0
Supporting Information for this article is available online at
2.12
9
9
9
9
9
9
9
Ha
Hb
Hc
Hd
He
Hf
Hg
5.64
3.93
5.54
3.02
2.74
2.36
2.01
ddd
ddd
q
11.0, 10.0, 4.0
10.0, 7.0, 3.3
3.3
Acknowledgment
We gratefully acknowledge Dr. Michael Parniak and National Insti-
tutes of Health (NIH) grant U19073975 for support of this work and
Dr. Rieko Ishima for help with NMR experiments.
dt
16.0, 3.3
ddd
dd
13.5, 4.0, 3.3
16.0, 3.3
References
(2) Klumpp, K.; Mirzadegan, T. Curr. Pharm. Des. 2006, 12,
1909.
dd
13.5, 11.0
(3) Tramontano, E. Mini-Rev. Med. Chem. 2006, 6, 727.
(4) Baroudy, B.; Archambault, J. US 2006005096, 2006.
(5) Agata, I.; Goto, S.; Hatano, T.; Nishibe, S.; Okuda, T.
Phytochemistry 1993, 33, 508.
(6) Wang, Z.-X.; Shi, Y. J. Org. Chem. 1997, 62, 8622.
(7) Sánchez-Abella, L.; Fernández, S.; Armesto, N.; Ferrero,
M.; Gotor, V. J. Org. Chem. 2006, 71, 5396.
All 1H NMR and 13C NMR spectra were taken on a Bruker 300, 500,
600, or 900 MHz instrument, with chemical shifts (d) reported rel-
ative to the respective solvent peak CDCl3 (7.27 ppm) or MeOD
(3.31 ppm). All NMR spectra were acquired at r.t. unless otherwise
stated. The abbreviations used to describe spin multiplicity for all
1H NMR spectra are as follows: s = singlet, d = doublet, t = triplet,
q = quartet, br = broad, m = multiplet, dd = doublet of doublet,
dt = doublet of triplet, ddd = doublet of doublet of doublet, etc. All
infrared spectra were obtained from a Nicolet Avatar E.S.P 360 FT-
IR spectrometer. Mass spectra were obtained on a high-resolution
mass spectrometer using electron impact or electrospray ionization.
Optical rotations were measured with a 241 Perkin-Elmer polarim-
eter.
(8) Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina,
B. S. Angew. Chem. Int. Ed. 2005, 44, 1378.
(9) (a) Khandelwal, Y.; Rajeshwari, K.; Rajagopalan, R.;
Swamy, L.; Dohadwalla, A. N.; de Souza, N. J.; Rupp, R. H.
J. Med. Chem. 1988, 31, 1872. (b) Meek, J. L.; Davidson,
F.; Hobbs, F. W. Jr. J. Am. Chem. Soc. 1988, 110, 2317.
(c) Yu, S.-H.; Chung, S.-K. Tetrahedron: Asymmetry 2004,
15, 581. (d) Lal, B.; Gangopadhyay, A. K.; Gidwani, R. M.;
Rajagopalan, R.; Ghate, A. V. Indian J. Chem., Sect. B: Org.
Chem. Incl. Med. Chem. 2006, 45, 232.
(10) (a) Elsinger, F.; Schreiber, J.; Eschenmoser, A. Helv. Chim.
Acta 1960, 43, 113. (b) Cox, B.; Morley, N.; Procopiou, P.
A.; Sharratt, P. J.; Watson, N. S. Tetrahedron Lett. 2000, 41,
7547. (c) MacKay, J. A.; Bishop, R. L.; Rawal, V. H. Org.
Lett. 2005, 7, 3421.
1,3,5-Tri-O-caffeoylquinic Acid (1)
A 5 mL, single-necked, round-bottomed flask equipped with a stir
bar, rubber septum, and nitrogen line is charged with methylene ac-
etal 10 (6 mg, 8 mmol) and CH2Cl2 (0.1 mL). The reaction flask is
cooled to –78 °C in a dry ice-acetone bath and BBr3 (0.12 mL, 1.0
M in CH2Cl2, 0.12 mmol) is added dropwise via syringe. Upon ad-
dition of BBr3, the reaction turns orange from colorless. After 2 h of
stirring, the reaction mixture is transferred to a separatory funnel
containing EtOAc and sat. aq Na2HPO4. The aqueous layer is sepa-
(11) (a) McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron
1968, 24, 2289. (b) Eicher, T.; Ott, M.; Speicher, A.
Synthesis 1996, 755.
Synlett 2009, No. 9, 1517–1519 © Thieme Stuttgart · New York