•
+
252(M , 8), 224(8), 220(22), 219(100), 115(6), 105(89), 91(15),
77(48), 51(15); Exact Mass: 252.1147 (calculated 252.1150).
9 Z. V. Todres, Organic Ion Radicals: Chemistry and Applications, Marcel
Dekker, New York, 2003.
10 F. Maran, D. D. M. Wayner and M. S. Workentin, Adv. Phys. Org.
Chem., 2001, 36, 85–166; F. Maran, D. D. M. Wayner and M. S.
Workentin, in Kinetics and Mechanism of the Dissociative Reduction
of C–X and X–X Bonds (X = O, S), ed. T. T. Tidwell and J. P. Richard,
New York, 2001.
Electrochemistry
Cyclic voltammetry was performed using either a Perkin-Elmer
PAR 283, or 263A potentiostat interfaced to a personal computer
equipped with PAR 270 electrochemistry software. The working
electrode was a 3 mm diameter glassy carbon rod (Tokai, GC-20)
sealed in glass tubing. The counter electrode was a 1 cm2 Pt plate.
The reference electrode was a silver wire immersed in a glass tube
with a sintered end containing 0.10 M TEAP in DMF. After each
experiment, it was calibrated against the ferrocene/ferricinium
couple at 0.475 V versus KCl saturated calomel electrode (SCE)
in DMF. Constant potential electrolyses were conducted with a
12 mm tipped glassy carbon rotating disk electrode (EDI101) with
a CTV101 speed control unit from Radiometer Analytical. The
experimental set-up was the same as previously reported.5
11 J. M. Tanko and J. P. Phillips, J. Am. Chem. Soc., 1999, 121, 6078–
6079.
12 J. P. Stevenson, W. F. Jackson and J. M. Tanko, J. Am. Chem. Soc, 2002,
124, 4271–4281.
13 M. Chahma, X. Li, P. Phillips, P. Schwartz, L. E. Brammer, Y. Wang
and J. M. Tanko, J. Phys. Chem. A, 2005, 109, 3372–3382.
14 J. M. Tanko, X. Li, M. Chahma, W. F. Jackson and J. N. Spencer, J. Am.
Chem. Soc., 2007, 129, 4181–4192.
15 R. L. Donkers and M. S. Workentin, Chem.–Eur. J., 2001, 7, 4012–4020.
16 R. L. Donkers and M. S. Workentin, J. Phys. Chem. B, 1998, 102,
4061–4063.
17 M. S. Workentin and R. L. Donkers, J. Am. Chem. Soc., 1998, 120,
2664–2665.
18 M. G. Zagorski and R. G. Salomon, J. Am. Chem. Soc., 1980, 80,
2501–2503.
19 R. G. Salomon, Acc. Chem. Res., 1985, 18, 294–301.
20 D. J. Coughlin and R. G. Salomon, J. Am. Chem. Soc., 1977, 99, 655–
657.
Heterogeneous electrolysis
21 R. G. Salomon and M. F. Salomon, J. Am. Chem. Soc., 1977, 99, 3501–
From the electrolysis of 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]-
heptane at the peak potential was recovered 1,3-diphenyl-cyclo-
3503.
22 D. J. Coughlin, R. S. Brown and R. G. Salomon, J. Am. Chem. Soc.,
1979, 101, 1533–1539.
23 B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell,
Vogel’s Textbook of Practical Organic Chemistry - 3-Benzoylpropanoic
Acid, John Wiley & Sons, New York, 1989.
24 K. Gollnick and G. O. Schenck, in 1,4-Cycloaddition Reactions, ed.
J. Hamer, Academic Press, New York, 1967, pp. 255–343.
25 Y. Takahashi, K. Wakamatsu, S. Morishima and T. Miyashi, J. Chem.
Soc., Perkins. Trans. 2, 1993, 243–253.
26 W. Adam and H. J. Eggelte, J. Org. Chem., 1977, 42, 3987–3988.
27 J.-M. Save´ant, in Advances in Electron Transfer Chemistry, ed. P. S. Mar-
iano, Greenwich, 1994, vol. 4, pp. 53–116.
pentane-cis-1,3-diol as
a
white solid in 97% yield;
mmax(NaCl)/cm−1: 3375 s (broad), 3088 m, 3060 m, 3030 m,
2966 m, 2938 m, 2858 w, 1665 w, 1602 w, 1495 m, 1449 s, 1406 m,
1262 m, 1227 m, 1100 m, 1071 s, 878 m, 759 s, 700 s; dH(400 MHz,
CDCl3, SiMe4): 2.42–2.57 (6H, m), 3.43 (2H, s, br), 7.25–7.31
(2H, m), 7.34–7.41 (4H, m), 7.50–7.55 (4H, m); alcohol peak
verified by deuterium exchange; dC(100 MHz, CDCl3,, SiMe4):
41.85, 55.83, 83.92, 124.94, 127.12, 128.36, 145.77; m/z(EI):
237(M − 17, 15), 236(M − 18, 41), 133(7), 105(100), 91(5), 77(13);
m/z(CI): 238(20), 237(100), 236(42), 220(6), 219(39), 218(33),
177(6), 105(52), 77(7); Exact Mass: (M − 18) 236.1204 (calculated
236.1201).
28 J.-M. Save´ant, Adv. Phys. Org. Chem., 2000, 35, 117–192.
29 J. C. Imbeaux and J.-M. Save´ant, J. Electroanal. Chem., 1973, 44, 169–
187.
30 J.-M. Save´ant and D. Tessier, J.Electroanal. Chem. Interfacial Elec-
trochem., 1975, 61, 251–263.
31 D. D. M. Wayner and V. D. Parker, Acc. Chem. Res., 1993, 26, 287–294.
32 R. L. Donkers, F. Maran, D. D. M. Wayner and M. S. Workentin,
J. Am. Chem. Soc., 1999, 121, 7239–7248.
Acknowledgements
This work was financially supported by the Natural Sciences and
Engineering Research Council of Canada, the Government of
Ontario (PREA) and the University of Western Ontario. DCM
thanks the Ontario Government for an OGSST postgraduate
scholarship. Doug Hairsine is thanked for performing the mass
spectroscopic measurements.
33 The effective radius reff was calculated using the expression reff
=
rB(2rAB − rB)/rAB where rAB is the molecular radius, and rB is the radius
of the charged portion.27 rAB was determined from the Stokes–Einstein
equation and the diffusion coefficient determined from the convolution
experiments. rB was approximated using the cumyl alkoxide anion.
34 C. Amatore, G. Capobianco, G. Farnia, G. Sandona`, J.-M. Save´ant,
M. G. Severin and E. Vianello, J. Am. Chem. Soc., 1985, 107, 1815–
1824.
35 J.-M. Save´ant, Acc. Chem. Res., 1980, 13, 323–329.
36 J. Pinson and J.-M. Save´ant, J. Am. Chem. Soc., 1978, 100, 1506–1510.
37 S. E. Stein, R. L. Brown and Y. A. Mirokhin, in NIST Standard
Reference Database 25, Gaithersburg, MD, 1991.
38 S. W. Benson, in Thermochemical Kinetics: Methods for Estimation of
Thermochemical Data and Rate Parameters, ed. John Wiley and Sons
Ltd., New York, 1976.
39 W. Adam, Acc. Chem. Res., 1979, 12, 390–396.
40 D. V. Avila, C. E. Brown, K. U. Ingold and J. Lusztyk, J. Am. Chem.
Soc., 1993, 115, 466.
Notes and references
1 Organic Peroxides, ed. W. Ando, John Wiley & Sons Ltd., New York,
1992.
2 C. Martin and V. Ullrich, in Prostaglandins, Leukotrienes and other
Eicosanoids: from Biogenesis to Clinical Applications, ed. F. Marks and
G. Fu¨rstenberger, Wiley-VCH, Weinheim, New York, 1999, pp. 89–108.
3 D. J. Voet and J. G. Voet, Biochemistry, Wiley, Hoboken, NJ, 3rd edn,
2004.
41 F. Najjar, C. Andre´-Barre`s, C. Lacaze-Dufaure, D. C. Magri, M. S.
Workentin and T. Tze`dakis, Chem.–Eur. J., 2007, 13, 1174–1179.
42 P. M. O’Neill, P. A. Stocks, M. D. Pugh, N. C. Araujo, E. E. Korshin,
J. F. Bickley, S. A. Ward, P. G. Bray, E. Pasini, J. Davies, E. Verissimo
and M. D. Bachi, Angew. Chem., Int. Ed., 2004, 43, 4193–4197.
43 N. L. Drake and J. R. Adam, J. Am. Chem. Soc., 1939, 61, 1326–
1329.
4 J. P. Plastaras, F. P. Guengerich, D. W. Nebert and L. J. Marnett, J. Biol.
Chem., 2000, 275, 11784–11790.
5 D. C. Magri and M. S. Workentin, Chem.–Eur. J., 2008, 14, 1698–1709.
6 R. L. Donkers and M. S. Workentin, J. Am. Chem. Soc., 2004, 126,
1688–1698.
7 D. L. B. Stringle and M. S. Workentin, Chem. Commun., 2003, 1246–
1247.
44 L. G. Greifenstein, J. B. Lambert, R. J. Nienhuis, G. E. Drucker and
G. A. Pagani, J. Am. Chem. Soc., 1981, 103, 7753–7761.
8 R. L. Donkers, J. Tse and M. S. Workentin, Chem. Commun., 1999,
135–136.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 3354–3361 | 3361
©