Á. Mastalir et al. / Catalysis Communications 17 (2012) 104–107
107
Table 2
particularly efficient catalyst, which provided high conversions and
alkene selectivities at short reaction times.
Hydrogenations of alkynes over Pd/GO2.
Reactanta
R [cm3 min−1 g−1
]
TOF [s−1
]
Conversion [%] S [%]c
b
1-pentyne
1-hexyne
3-hexyne
1-heptyne
13,653
14,034
8310
6148
1045
2.8
2.8
1.7
1.2
0.2
78.6
88.1
63.5
14.7
6.4
98.2
95.1
98.3
100
100
Acknowledgment
Financial support provided by the TÁMOP-4.2.1/B-09/1/KONV-
2010-0005 project is gratefully acknowledged.
1-phenyl-1-butyne
a
t=45 min.
Reaction rate.
b
References
c
Selectivity of the main product (1-alkene or cis-alkene).
[1] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44 (2006) 3342–3347.
[2] I. Dékány, R. Krüger-Grasser, A. Weiss, Colloid & Polymer Science 276 (1998)
570–576.
[3] T. Szabó, E. Tombácz, E. Illés, I. Dékány, Carbon 44 (2006) 537–545.
[4] R.J. Beckett, R.C. Croft, The Journal of Physical Chemistry 56 (1952) 929–934.
[5] B. Brodie, Annals Chimie Physical 59 (1860) 466–472.
[6] L. Staudenmaier, Berichte der Deutschen Chemischen Gesellschaft 31 (1898)
1481–1487.
[7] W.S. Hummers, R.E. Offemann, Journal of the American Chemical Society 80
(1958) 1339-1339.
[8] Z. Liu, Z.M. Wang, X. Yang, K. Ooi, Langmuir 18 (2002) 4926–4932.
[9] A. Clauss, R. Plass, H.P. Boehm, U. Hofmann, Zeitschrift fur Anorganische und All-
gemeine Chemie 291 (1957) 205–220.
[10] G. Ruess, Monatshefte fur Chemie 76 (1946) 381–417.
[11] M. Mermoux, Y. Chabre, A. Rousseau, Carbon 29 (1991) 469–474.
[12] T. Nakajima, Y. Matsuo, Carbon 32 (1994) 469–475.
[13] H. He, T. Riedl, A. Lerf, J. Klinowski, The Journal of Physical Chemistry 100 (1996)
19954–19958.
[14] S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Journal of Mate-
rials Chemistry 16 (2006) 155–158.
[15] T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány,
Chemistry of Materials 18 (2006) 2740–2749.
detected as by-products, formed by isomerization [23]. The results of
the catalytic test reactions confirmed that Pd/GO1, obtained from the
precursor Pd(NH3)4(NO3)2, was a more efficient catalyst than Pd/
GO2, prepared from K2PdCl4. As the structures of the Pd/GO nano-
composites and the size distributions of their surface Pd particles
were very similar, the difference in their catalytic performance may
be related to their interlamellar Pd content. The evidence that the
particle diameters for Pd/GO2 were smaller than those for Pd/GO1
(Fig. 3) indicated that Pd/GO2 was more likely to accommodate an
enhanced amount of interlamellar Pd particles. It may be established
that both the surface and interlamellar Pd particles participated in the
reactions as active sites. The catalytic behavior of Pd/GO1 was basical-
ly determined by its Pd content located on the external surface of GO,
and hence this sample may be regarded as a GO-supported Pd cata-
lyst. On the other hand, an enhanced amount of interlamellar Pd
nanocrystals, as suggested for Pd/GO2, tends to decrease the catalytic
performance. For the transformation of 3-hexyne, the Pd/GO samples
proved to be more efficient than the conventional supported Pd cata-
lysts [20], as the former samples provided better alkene selectivities
at high conversions.
[16] N.A. Kotov, I. Dékány, J.H. Fendler, The Journal of Physical Chemistry 99 (1996)
13065–13069.
[17] Y. Matsuo, T. Niwa, Y. Sugie, Carbon 37 (1999) 897–901.
[18] Y. Matsuo, T. Miyabe, T. Fukutsuka, Y. Sugie, Carbon 45 (2007) 1005–1012.
[19] Á. Mastalir, Z. Király, M. Benkő, I. Dékány, Catalysis Letters 124 (2008) 34–38.
[20] Á. Mastalir, Z. Király, Á. Patzkó, I. Dékány, P. L'Argentiere, Carbon 46 (2008)
1631–1637.
[21] G. Moon, Y. Park, W. Kim, W. Choi, Carbon 49 (2011) 3454–3462.
[22] K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani,
Y. Kuroda, H. Ishida, Carbon 49 (2011) 1118–1125.
[23] Á. Molnár, A. Sárkány, M. Varga, Journal of Molecular Catalysis A: Chemical 173
(2001) 185–221.
[24] Á. Mastalir, Z. Király, Gy Szöllősi, M. Bartók, Journal of Catalysis 194 (2000)
146–152.
[25] Á. Mastalir, Z. Király, Journal of Catalysis 220 (2003) 372–381.
[26] P.C. Aben, Journal of Catalysis 10 (1968) 224–229.
4. Conclusions
Graphite oxide was utilized as a host material for the generation of
Pd nanoparticles with controlled particle size. Low-loaded, organo-
philic Pd/GO nanocomposites were prepared by using different com-
plex precursors and C14TAB as a stabilizer. Structural investigation
confirmed that an efficient particle size control was achieved and
the formation of Pd nanoparticles had no effect on the structure of
the GO host. It was found that Pd nanoparticles were formed both
on the external surface and in the interlamellar space of GO. The Pd/
GO samples were tested as catalysts in the liquid-phase hydrogena-
tions of terminal and internal alkynes. Both samples proved to be ef-
ficient catalysts for the reactions of lower alkynes. As compared with
Pd/GO1, Pd/GO2 was suggested to comprise an enhanced amount of
interlamellar Pd particles, which were less accessible for reactants
than those on the external surface of GO. Pd/GO1 proved to be a
[27] C. Hontoria-Lucas, A.J. López-Peinado, J. de López-González, M.L. Rojas-Cervantes,
R.M. Martín-Aranda, Carbon 33 (1995) 1585–1592.
[28] B. Veisz, Z. Király, L. Tóth, B. Pécz, Chemistry of Materials 14 (2002) 2882–2888.
[29] L. Bisson, C. Boissiere, L. Nicole, D. Grosso, J.P. Jolivet, C. Thomazeau, D. Uzio, G.
Berhault, C. Sanchez, Chemistry of Materials 21 (2009) 2668–2678.
[30] F.P. Cavasino, C. Sbriziolo, M. Cusumano, A. Gianetto, Journal of the Chemical So-
ciety, Faraday Transactions 92 (1996) 2263–2268.
[31] G. Carturan, G. Facchin, G. Cocco, S. Enzo, G. Navazio, Journal of Catalysis 76
(1982) 405–417.
[32] C.A. Hamilton, S.D. Jackson, G.J. Kelly, R. Spence, D. de Bruin, Applied Catalysis A:
General 237 (2002) 201–209.