3
1. (a) Matsuda, Y.; Yamanaka, R.; Nakamura K. Tetrahedron:
Asymmetry 2009, 20, 513–557. (b) Hall, M,; Bommarius A. S. Chem.
Rev. 2011, 111, 4088–4110.
compositions were determined by combining chiral HPLC
analysis and 1H NMR.13a-c
2. Monti, D.; Ottolina, G.; Carrea, G.; Riva, S. Chem. Rev. 2011, 111,
4111-4140.
3. Goldberg, K.; Schroer, K.; Lütz, S.; Liese, A. Appl. Microbiol.
Biotechnol. 2007, 76, 249–255.
For the preparation of ꢁ-hydroxyester by microbial reduction,
we decided to test the activity of Pichia glucozyma using
(enzymatically) difficult to hydrolyze tert-butyl ꢁ-ketoesters
(Table 4).
4. Kaluzna, I. A.; Matsuda, T.; Sewell, A. K.; Stewart, J. D. J. Am. Chem.
Soc. 2004, 126, 12827–12832.
5. (a) Moore, J. C.; Pollard, D. J.; Kosjek, B.; Devine, P. N. Acc. Chem.
Res. 2007, 40, 1412–1419; (b) Moore, J. C.; Pollard, D. J.; Kosjek, B.;
Devine, P. N. Acc. Chem. Res. 2007, 40, 1412–1419.
Table 4. Biotransformation of tert-butyl ꢁ-ketoesters with P.
glucozyma. Biotransformations were carried out with freshly
prepared cells (50 mgdry weight/ml) suspended in phosphate
buffer (0.1 M, pH 7) in the presence of 50 g/L glucose.
Stereochemical compositions were determined by chiral
HPLC analysis (see Supplementary Data for details).
6. a) Lavandera, I.; Kern, A.; Ferreira-Silva, B.; Glieder, A.; de
Wildeman, S.; Kroutil, W. J. Org. Chem. 2008, 73, 6003–6005. (b)
Cuetos, A., Rioz-Martínez, A., Bisogno, F.R.; Grischek, B.;
Lavandera, I.; Gonzalo, G.; Kroutil, W.; Gotor V. Adv. Synth. Catal.
2012, 354, 1743-1749..
7. (a) Molinari, F.; Gandolfi, R.; Villa, R.; Occhiato, E. G. Tetrahedron:
Asymmetry 1999, 10, 3515–3520. (b) Forzato, C.; Gandolfi, R.;
Molinari, F.; Nitti, P.; Pitacco, G. Tetrahedron 2001. (c) Hoyos, P.;
Sansottera, G.; Fernández, M.; Molinari, F.; Sinisterra, J. V.;
Alcántara, A. R. Tetrahedron 2008, 64, 7929-7936. (d) Gandolfi, R.;
Cesarotti, E.; Molinari, F.; Romano, D. Tetrahedron 2009, 20, 411–
414. (e) Rimoldi, I.; Pellizzoni, M.; Facchetti, G.; Molinari, F.; Zerla,
D.; Gandolfi, R. Tetrahedron: Asymmetry 2011, 22, 2110–2116. (f)
Husain, S. M.; Stillger, T.; Dünkelmann, P.; Lodige, M.ꢂꢃ Walter, L.ꢂꢃ
Breitling, E.ꢂꢃ Pohl, M.ꢂꢃ Bürchner, M.ꢂꢃ Krossing, I.ꢂꢃ Müller, M.;
Romano, D.; Molinari F. Adv. Synth. Catal. 2011, 353, 2359-2362. (g)
Rimoldi, I.; Cesarotti, E.; Zerla, D.; Molinari, F.; Albanese D.;
Castellano, C.; Gandolfi R. Tetrahedron: Asymmetry 2011, 22, 597-
602. (h) Fragnelli, M. C.; Hoyos, P.; Romano, D.; Gandolfi, R.;
Alcántara, A. R.; Molinari, F. Tetrahedron 2012, 68, 523–528. (i)
Contente, M.L.: Zambelli, P.; Galafassi, S.; Tamborini, L.; Pinto, A.;
Conti, P.; Molinari, F.; Romano D. J. Mol. Catal. B: Enzym.
8. (a) Molinari, F.; Cavenago, K.S.; Romano, A.; Romano, D.; Gandolfi,
R. J. Biotechnol. 2004, 15, 1945-1947. (b) Romano, D.; Gandolfi, R.;
Guglielmetti, S.; Molinari, F. Food Chem. 2011, 124, 1096-1098.
9. Typical procedure for the preparation of the biocatalysts and for
biotransformations: Pichia glucozyma CBS 5766 was cultured using
malt extract + 0.5% yeast extract medium (malt broth, yeast extract 5
g/L, pH 6.0) in a 3.0 L fermenter with 1.0 L of liquid medium for 24 h,
at 28 °C and agitation speed 100 rpm. Cells from submerged cultures
were harvested by centrifugation and washed with 0.1 M phosphate
buffer, pH 7.0. Reductions were carried out in 100 mL screw-capped
test tubes with a reaction volume of 50 mL with cells (2.5 g, dry
weight) suspended in 0.1 M phosphate buffer, pH 7.0 containing 50
g/L of glucose. After 30 min of incubation, substrates (20 mM) were
added and the incubation continued for 24 h under magnetic stirring.
When the reaction was over, pH was brought to pH 1 by the addition
of 1 M HCl and 35 mL of EtOAc were added and the resulting mixture
was shaken and centrifuged; the aqueous phase was extracted twice
more with 35 ml of EtOAc. The organic phases were collected and
dried over Na2SO4 and the solvent was evaporated. The crude residues
were purified by flash chromatography.
2
Entry
Substrate
Yield (%)
e.e. (%)
10(S)
d.e. (%)
< 5
Time (h)
18
1
2
1l
60
70
1m
75(S)
24
Reduction of tert-butyl 4-oxo-4-phenylbutanoate (1l) gave
(S)-tert-butyl 4-hydroxy-4-phenylbutanoate (2l) with sluggish
enantioselectivity (Table 4, entry 1), whereas formation of the
corresponding ꢁ-lactone was not observed; tert-butyl 2-methyl-4-
oxo-4-phenylbutanoate (1m) was also converted into tert-butyl 4-
hydroxy-2-methyl-4-phenylbutanoate 2m, as the only detectable
product (70% yield after 24 h) affording the syn- and anti-
diastereomers (2R,4S)-2m and (2S,4S)-2m with 75% e.e. (Table
4, entry 2). The stereochemical composition of 2m was
determined after purification of the four stereoisomers by
preparative chiral HPLC. Relative configuration of the syn- and
anti-diastereomers was assigned by 1H-NMR,13c whereas
comparison of the retention times in chiral HPLC with literature
data13d allowed for assignment of the absolute configuration.
In conclusion, we have shown that whole cells of Pichia
glucozyma CBS 5766 can be used for the enantioselective
reduction of different aromatic ketones; enantioselectivity
towards simple aromatic ketones under optimised conditions is
sometimes remarkable. Enantioselectivity was generally lower
with ꢁ-ketoesters respect to ꢀ-ketoesters; the occurrence of
competitive esterase activities can be modulated by choosing the
best biotransformation conditions and/or the suited substrate,
turning whole cells of P. glucozyma into a useful system for
multistep reactions.
10. (a) Kayser, M.M.; Mihovilovic, M.D.; Kearns, J.; Feicht, A.; Stewart,
J.D. J.Org Chem. 1999, 64, 6603-6608. (b) Milagre, C.D.F.; Milagre,
H.M.S.; Moran, P.J.S.; Rodrigues, J.A.R. J. Mol. Catal. B: Enzym.
2009, 56, 55-60.
11. Ratovelomanana-Vidal, V.; Girard, C.; Touati, R.; Tranchier, J.P.; Ben
Hassine, B.; Gênet, J.P. Adv. Synth. Catal. 2003, 345, 261-274.
12. Pamies, O.; Bäckvall, J.E. Adv. Synth. Catal., 2002, 344, 947-952.
13. (a) Hoffman, R.V.; Kim, H.O. J. Org. Chem. 1995, 60, 5107-5113. (b)
Wurz, N.E.; Daniliuc, C.G.; Glorius, F. Chem. Eur. J. 2012, 18, 16297-
16301. (c) Nagano, H.; Yokota, M.; Iwazaki, Y. Tethahedron Lett.
2004, 45, 3035-3037. (d) Kallemeyn, J.M.; Mulhern, M.M.; Ku, Y.Y.
Synlett, 2011, 4, 535-538.
References and notes