Green Chemistry
Communication
alcohols. In the present work, each of these enzymes has
been combined in a new way with xanthine dehydrogenases
(XDHs) to create novel synthetic cascade reactions. The
XDHs have been applied for the first time in preparative bio-
catalysis. They do not require addition of expensive cofactors
and were highlighted to be ideally suited for combination with
other oxidases. Evaluation of biocatalyst stability, immobilis-
ation and recycling will facilitate scale up of these cascade
5732; (f) J. W. W. Chang and P. W. H. Chan, Angew. Chem.,
Int. Ed., 2008, 47, 1138; (g) S. Muthaiah, S. C. Ghosh,
J.-E. Jee, C. Chen, J. Zhang and S. H. Hong, J. Org. Chem.,
2010, 75, 3002; (h) Y. Li, F. Jia and Z. Li, Chemistry, 2013,
19, 82.
9 (a) H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2007, 129,
13796; (b) J. W. Bode and S. S. Sohn, J. Am. Chem. Soc.,
2007, 129, 13798.
processes. Work is currently ongoing to expand the range of 10 S. C. Ghosh, J. S. Y. Ngiam, A. M. Seayad, D. T. Tuan,
mutually compatible and greener oxidative functional group C. L. L. Chai and A. Chen, J. Org. Chem., 2012, 77, 8007.
transformations based on bio–bio and chemo–biocatalytic 11 W.-J. Yoo and C.-J. Li, J. Am. Chem. Soc., 2006, 128,
cascades.
13064.
12 (a) J. Li, F. Xu, Y. Zhang and Q. Shen, J. Org. Chem., 2009,
74, 2575; (b) C. Qian, X. Zhang, J. Li, F. Xu, Y. Zhang and
Q. Shen, Organometallics, 2009, 28, 3856; (c) S. Seo and
T. J. Marks, Org. Lett., 2008, 10, 317.
Acknowledgements
This paper is presented as part of CHEM21 under the 13 S. Gaspa, A. Porcheddu and L. De Luca, Org. Biomol. Chem.,
Innovative Medicines Initiative Joint Undertaking under 2013, 11, 3803.
the grant agreement no. 115360, resources of which are com- 14 X.-F. Wu, M. Sharif, A. Pews-Davtyan, P. Langer, K. Ayub
posed of financial contribution from the European Union’s and M. Beller, Eur. J. Org. Chem., 2013, 2783.
Seventh Framework Program (FP7/2007–2013) and EFPIA 15 (a) F. Escalettes and N. J. Turner, ChemBioChem, 2008, 9,
companies’ in-kind contributions. We also thank The
Engineering and Physical Sciences Research Council (EPSRC)
for funding.
857; (b) B. Yuan, A. Page, C. P. Worrall, F. Escalettes,
S. C. Willies, J. J. W. McDouall, N. J. Turner and J. Clayden,
Angew. Chem., Int. Ed., 2010, 49, 7010.
16 M. Fabbrini, C. Galli, P. Gentili and D. Macchitella, Tetra-
hedron Lett., 2001, 42, 7551.
17 M. Tojo and M. Fernandez, in Oxidation of Primary Alcohols
to Carboxylic Acids: a Guide to Current Common Practice,
Springer, 2007.
18 (a) B. N. Zope, D. D. Hibbitts, M. Neurock and R. J. Davis,
Science, 2010, 330, 74; (b) G. T. Brink, Science, 2000, 287,
1636.
Notes and references
1 V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471.
2 R. A. Sheldon, Chem. Soc. Rev., 2012, 41, 1437.
3 (a) E. Balaraman, E. Khaskin, G. Leitus and D. Milstein,
Nat. Chem., 2013, 5, 122; (b) S. Annen, T. Zweifel, F. Ricatto
and H. Grützmacher, ChemCatChem, 2010, 2, 1286; 19 (a) F. Hollmann, I. W. C. E. Arends, K. Buehler,
(c) T. Zweifel, J.-V. Naubron and H. Grützmacher, Angew.
Chem., Int. Ed., 2009, 48, 559.
4 (a) S. van Pelt, R. Teeuwen, M. Janssen, R. A. Sheldon,
A. Schallmey and B. Bühler, Green Chem., 2011, 13, 226;
(b) D. Romano, R. Villa and F. Molinari, ChemCatChem,
2012, 4, 739.
P. J. Dunn, R. M. Howard, R. Kumar, I. Martínez and 20 J.-I. Hirano, K. Miyamoto and H. Ohta, Tetrahedron Lett.,
J. W. Wong, Green Chem., 2011, 13, 1791; (b) M. T. Reetz, 2008, 49, 1217.
J. Am. Chem. Soc., 2013, 135, 12480; (c) C. Gunanathan, 21 Although this E. coli enzyme is named ‘xanthine oxidase,
Y. Ben-David and D. Milstein, Science, 2007, 317, 790;
(d) S. Lal and T. J. Snape, RSC Adv., 2013, 4, 1609.
5 N. J. Turner, Nat. Chem. Biol., 2009, 5, 567.
6 (a) V. Köhler, Y. M. Wilson, M. Dürrenberger, D. Ghislieri,
E. Churakova, T. Quinto, L. Knörr, D. Häussinger,
microbial’ by the supplier (Sigma-Aldrich) we have named
this enzyme E. coli xanthine dehydrogenase (XDH) since
one of us (S.L.) has unpublished results to show that
this enzyme will use NAD+ as an electron acceptor and is
therefore not formally an oxidase.
F. Hollmann, N. J. Turner, et al., Nat. Chem., 2013, 5, 93; 22 R. Hille, Arch. Biochem. Biophys., 2005, 433, 107.
(b) D. Ghislieri, A. P. Green, M. Pontini, S. C. Willies, 23 (a) C. Beedham, Drug Metab. Rev., 1985, 16, 119;
I. Rowles, A. Frank, G. Grogan and N. J. Turner, J. Am.
Chem. Soc., 2013, 135, 10863.
7 C. A. Denard, J. F. Hartwig and H. Zhao, ACS Catal., 2013,
3, 2856.
8 (a) Y. Tamaru, Y. Yamada and Z. Yoshida, Synthesis, 1983,
474; (b) T. Naota and S.-I. Murahashi, Synlett, 1991, 693;
(b) C. Beedham, Prog. Med. Chem., 1987, 24, 85;
(c) U. Dietzel, J. Kuper, J. A. Doebbler, A. Schulte,
J. J. Truglio, S. Leimkühler and C. Kisker, J. Biol. Chem.,
2009, 284, 8768; (d) D. C. Pryde, D. Dalvie, Q. Hu,
P. Jones, R. S. Obach and T.-D. Tran, J. Med. Chem.,
2010, 53, 8441.
(c) A. Tillack, I. Rudloff and M. Beller, Eur. J. Org. Chem., 24 A. Agarwal and U. C. Banerjee, Open Biotechnol. J., 2009, 3,
2001, 523; (d) W.-K. Chan, C.-M. Ho, M.-K. Wong and 46.
C.-M. Che, J. Am. Chem. Soc., 2006, 128, 14796; (e) Y. Suto, 25 T. Dohi, N. Takenaga, A. Goto, H. Fujioka and Y. Kita,
N. Yamagiwa and Y. Torisawa, Tetrahedron Lett., 2008, 49,
J. Org. Chem., 2008, 73, 7365.
This journal is © The Royal Society of Chemistry 2014
Green Chem.