Journal of the American Chemical Society
Page 4 of 6
Chem. Rev. 2012, 112, 5879. (m) Daugulis, O.; Do, H.-Q.; Shabash-
ov, D. Acc. Chem. Res. 2009, 42, 1074. (n) Daugulis, O.; Roane, J.;
Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
In summary, we have developed an operationally sim-
ple, metal-free CH–CH-type cross coupling of arenes
and alkynes that proceeds under mild conditions. The
process is mediated by a sulfoxide-directing group that
captures and activates the alkyne coupling partner before
delivery to the arene and C–C bond formation. The
products of cross coupling are difficult to access using
current metal-mediated procedures and are rich in syn-
thetic potential. For example, they are readily converted
to products of formal metal-free arene C–H alkynylation
and to important benzothiophene motifs, as exemplified
by the metal-free synthesis of a precursor to an antipsy-
chotic drug. Furthermore, sulfur in a validated heterocy-
clic drug scaffold can be used to direct metal-free CH–
CH cross coupling thus facilitating late-stage scaffold
elaboration.
1
2
3
4
5
6
7
8
(4) (a) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F.
Angew. Chem. Int. Ed. 2012, 51, 10236. (b) Li, C. -J. Acc. Chem. Res.
2009, 42, 335. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111,
1215. (c) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886.
(d) Narayan, R.; Matcha, K.; Antonchick, A. P. Chem. Eur. J. 2015,
21, 14678.
(5) (a) The Risk list. British Geological Survey (2012);
df. (b) Sun, C. –L.; Shi, Z. -J. Chem. Rev. 2014, 114, 9219.
(6) International Conference on Harmonisation of Technical Re-
quirements for Registration of Pharmaceuticals for Human Use,
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Guideline
for
Elemental
Impurities
Q3D
(2014);
information/guidances/ ucm371025.pdf.
(7) Usluer, Ö.; Abbas, M.; Wantz, G.; Vignau, L.; Hirsch, L.; Gra-
na, E.; Brochon, C.; Cloutet, E.; Hadziioannou, G., ACS Macro Lett.
2014, 3, 1134.
(8) For reviews of Pummerer processes and selected recent applica-
tions, see: (a) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter,
D. J. Angew. Chem. Int. Ed. 2010, 49, 5832. (b) Akai, S.; Kita, Y.
Top. Curr. Chem. 2007, 274, 35. (c) Bur, S. K.; Padwa, A. Chem.
Rev. 2004, 104, 2401. (d) Murakami, K.; Yorimitsu, H.; Osuka, A.
Angew. Chem. Int. Ed. 2014, 53, 7510. (e) Huang, X.; Patil, M.; Fa-
rès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 7312. (f)
Huang, X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510. (g)
Ookubo, Y.; Wakamiya, A.; Yorimitsu, H.; Osuka, A. Chem. Eur. J.
2012, 18, 12690. (g) Kobatake, T.; Fujino, D.; Yoshida, S.; Yori-
mitsu, H.; Oshima, K. J. Am. Chem. Soc. 2010, 132, 11838. (h) Koba-
take, T.; Yoshida, S.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int.
Ed. 2010, 49, 2340.
(9) For sulfoxide-directed couplings using allylsilanes: (a) Eber-
hart, A. J.; Cicoira, C.; Procter, D. J. Org. Lett. 2013, 15, 3994. (b)
Eberhart, A. J.; Imbriglio, J. E.; Procter, D. J. Org. Lett. 2011, 13,
5882.
(10) For sulfoxide-directed couplings using propargylsilanes: (a)
Eberhart, A. J.; Procter, D. J. Angew. Chem. Int. Ed. 2013, 52, 4008.
(b) Eberhart, A. J.; Shrives, H. J.; Álvarez, E., Carrër, A.; Zhang, Y.;
Procter, D. J. Chem. Eur. J. 2015, 21, 7428. (c) Eberhart, A. J.;
Shrives, H.; Zhang, Y.; Carrër, A.; Parry, A. V. S.; Tate, D. J.; Turner,
M. L.; Procter, D. J. Chem. Sci. 2015, DOI: 10.1039/C5SC03823E.
(11) Nenajdenko, V. G.; Vertelezkij, P. V.; Balenkova, E. S. Syn-
thesis 1997, 1997, 351.
(12) Nenajdenko, V. G.; Balenkova, E. S. Russ. J. Org. Chem.,
2003, 39, 323.
(13) (a) Huang, X.; Klimczyk, S.; Maulide, N. Synthesis 2012, 175.
(b) Nyong, A. M.; Rainier, J. D. J. Org. Chem. 2005, 70, 746. (c)
Novikov, A. V.; Kennedy, A. R.; Rainier, J. D. J. Org. Chem. 2003,
68, 993.
(14) The observed regioselectivity in the formation of III may arise
from hyperconjugative stabilization of the beta-vinyl cation by the
alkyl and trialkylsilyl groups. Wierschke, S. G.; Chandrasekhar, J.;
Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 1496.
(15) For low-cost metal-catalyzed cross coupling of organosulfur
substrates, see: (a) Baralle, A.; Otsuka, S.; Guérin, V.; Murakami, K.;
Yorimitsu, H.; Osuka, A. Synlett 2015, 26, 327. (b) Pan, F.; Shi, Z. -J.
ACS Catalysis 2014, 4, 280. (c) Dubbaka, S. R.; Vogel, P. Angew.
Chem. Int. Ed. 2005, 44, 7674. See also ref. 9b.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on
the ACS Publications website. Optimization table, mecha-
nistic studies, experimental details, characterization data
and spectra are in the Supplementary Information (PDF).
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
EPSRC (Established Career Fellowship to D. J. P.; Postdoc-
toral Fellowship to J. A. F-S.; Doctoral Prize to A. J. E.)
and The Leverhulme Trust (Fellowship to D. J. P.).
REFERENCES
(1) Corey, E. J., Cheng, X. M. The logic of chemical synthesis;
John Wiley & Sons: New York, 1989.
(2) (a) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. (b)
Magano, J., Dunetz, J. R. Transition Metal-Catalyzed Couplings in
Process Chemistry: Case Studies From the Pharmaceutical Industry;
Wiley: 2013. (c) Roughley, S. D; Jordan, A. M. J. Med. Chem. 2011,
54, 3451. (d) Crabtree, R. H. The Organometallic Chemistry of Tran-
sition Metals; Wiley Interscience: New York, 2005. (e) Tsuji, J. Tran-
sition Metal Reagents and Catalysts: Innovations in Organic Synthe-
sis; Wiley: Chichester, 2002. (f) de Vries, J. In Organometallics as
Catalysts in the Fine Chemical Industry; Beller, M., Blaser, H. -U.,
Eds.; Springer Berlin Heidelberg: 2012; Vol. 42, p 1. (g) Johansson
Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V.
Angew. Chem. Int. Ed. 2012, 51, 5062. (h) Nicolaou, K. C.; Bulger, P.
G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442. (i) Corbet, J. –
P.; Mignani, G. Chem. Rev. 2006, 106, 2651.
(3) (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y.
Organic Chemistry Frontiers 2015, 2, 1107. (b) Wencel-Delord, J.;
Glorius, F. Nature Chem. 2013, 5, 369. (c) McMurray, L.; O'Hara, F.;
Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (d) Gutekunst, W. R.;
Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (e) Chen, X.; Engle, K.
M.; Wang, D. –H.; Yu, J. –Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
(f) Godula, K.; Sames, D. Science 2006, 312, 67. (g) Labinger, J. A.;
Bercaw, J. E. Nature 2002, 417, 507. (h) Colby, D. A.; Tsai, A. S.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (i)
Engle, K. M.; Mei, T. –S.; Wasa, M.; Yu, J. -Q. Acc. Chem. Res.
2012, 45, 788. (j) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res.
2012, 45, 936. (k) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev.
2007, 107, 174. (l) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H.
(16) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084.
(17) (a) Chandraratna, R. A. S. U. S. Patent 5,602,130; 1997. (b)
Kumar, B. V. S.; Patil, V. D.; Raut, C. N.; Bhirud, S. B.; Chandrasek-
har, B. WO 2005/003125 A1, 2005.
(18) Frigoli, S.; Fuganti, C.; Malpezzi, L.; Serra, S. Org. Process
Res. Dev. 2005, 9, 646.
(19) Setoh, M.; Ishii, N.; Kono, M.; Miyanohana, Y.; Shiraishi, E.;
Harasawa, T.; Ota, H.; Odani, T.; Kanzaki, N.; Aoyama, K.; Hamada,
T.; Kori, M., J. Med. Chem. 2014, 57, 5226.
(20) Agejas-Chicharro, J.; Bueno Melendo, A. B.; Camp, N. P.;
Gilmore, J.; Jimenez-Aguado, A. M.; Lamas-Peteira, C.; Marcos-
ACS Paragon Plus Environment