COMMUNICATIONS
unfavorable owing to steric congestion in V (R Me). A
higher electron density on C1 of isoprene than on C4 might
contribute to the selective nucleophilic C1 addition of
isoprene to carbonyl compounds.
R. J. Thomas, Tetrahedron Lett. 1995, 36, 4283 ± 4286; c) S. Kobayashi,
K. Nishino, J. Org. Chem. 1994, 59, 6620 ± 6628.
5] H. Miyake, K. Yamamura, Chem. Lett. 1992, 507 ± 508.
6] a) T. Ishiyama, M. Yamamoto, N. Miyaura, Chem. Commun. 1997,
[
[
6
89 ± 690; b) T. Ishiyama, M. Yamamoto, N. Miyaura, Chem.
Organozinc compounds with no accessible b-hydrogen
atoms can similarly undergo a three-component connection
reaction. For example, as illustrated in Equation (c), diphe-
nylzinc [1.2 mmol, from ZnCl2 (1.2 mmol) and PhMgBr
Commun. 1996, 2073 ± 2074.
7] M. Suginome, H. Nakamura, T. Matsuda, Y. Ito, J. Am. Chem. Soc.
[
[
1
998, 120, 4248 ± 4249.
8] S. Onozawa, Y. Hatanaka, M. Tanaka, Tetrahedron Lett. 1998, 39,
9043 ± 9046.
(
2.4 mmol)] reacted with 1,3-butadiene (4.0 mmol) and ben-
[9] Y. Obora, Y. Tsuji, T. Kawamura, J. Am. Chem. Soc. 1995, 117, 9814 ±
9821.
[10] Y. Obora, Y. Tsuji, T. Kawamura, Organometallics 1993, 12, 2853 ±
zaldehyde (1.0 mmol) to furnish (E)-1,5-diphenyl-3-penten-1-
[
24]
ol (6a) in 61% yield of isolated product. No 1:2:1 adducts
were detected, even for the reaction with pivalaldehyde, from
which 6b was isolated as the sole product [Eq. (c)].
2
856.
[
[
11] Y. Obora, Y. Tsuji, T. Kakehi, M. Kobayashi, Y. Shinkai, M. Ebihara,
T. Kawamura, J. Chem. Soc. Perkin Trans. 1 1995, 599 ± 608.
12] Wacker-type oxidative 1,4-difunctionalization: A. Aranyos, K. J.
Szabo, J.-E. Bäckvall, J. Org. Chem. 1998, 63, 2523 ± 2529.
[13] a) M. Kimura, H. Fujimatsu, A. Ezoe, K. Shibata, M. Shimizu, S.
Matsumoto, Y. Tamaru, Angew. Chem. 1999, 111, 410 ± 413; Angew.
Chem. Int. Ed. 1999, 38, 397 ± 400; b) M. Kimura, A. Ezoe, K. Shibata,
Y. Tamaru, J. Am. Chem. Soc. 1998, 120, 4033 ± 4034.
OH
O
0.1 [Ni(acac)2]
Ph2Zn
+
+
(c)
Ph
6
6
R
R
THF, 25 °C, 20 min
a: R = Ph, 61%
b: R = tBu, 70%
[14] Ni-catalyzed allylation of carbonyl compounds with 1,3-dienes: a) M.
Takimoto, Y. Hiraga, Y. Sato, M. Mori, Tetrahedron Lett. 1998, 39,
Experimental Section
4
543 ± 4546; b) Y. Sato, T. Takanashi, M. Hoshiba, M. Mori,
(
E)-1-phenyl-3-hexen-1-ol (2a): To a homogeneous solution of [Ni(acac)
2
]
Tetrahedron Lett. 1998, 39, 5579 ± 5582, and references therein; Ni-
promoted homoallylation of carbonyls with 1,3-dienes: c) Y. Sato, M.
Takimoto, M. Mori, Tetrahedron Lett. 1996, 37, 887 ± 890.
(
51.2 mg, 0.2 mmol) in dry THF (5 mL) were added 1,3-butadiene (670 mL,
8
1
.0 mmol), benzaldehyde (212 mg, 2.0 mmol), and dimethylzinc (4.8 mL,
m in hexane). The mixture was stirred at room temperature for 2 h under
[15] a) J. Seo, H. M. P. Chui, M. J. Heeg, J. Montgomery, J. Am. Chem. Soc.
1999, 121, 476 ± 477; b) M. V. Chevliakov, J. Montgomery, Angew.
Chem. 1998, 110, 3346 ± 3348; Angew. Chem. Int. Ed. 1998, 37, 3144 ±
3146; c) D.-M. Cui, H. Yamamoto, S.-I. Ikeda, K. Hatano, Y. Sato, J.
Org. Chem. 1998, 63, 2782 ± 2784; d) S.-I. Ikeda, N. Mori, Y. Sato, J.
Am. Chem. Soc. 1997, 119, 4779 ± 4780, and references therein.
[16] Three-component reaction of allylic Grignard reagents, isoprene, and
carbonyl compounds: F. Barbot, P. Miginiac, J. Organomet. Chem.
1978, 145, 269 ± 276.
[17] K. Takai, N. Matsukawa, A. Takahashi, T. Fujii, Angew. Chem. 1998,
110, 160 ± 163; Angew. Chem. Int. Ed. 1998, 37, 152 ± 155.
[18] The product 3 is contaminated with a chromatographically (recycle
HPLC) inseparable isomer (<10%), the structure of which is
tentatively assigned as C1-substituted (E)-7-methyl-3,8-nonadien-1-
ols.
N
2
and then quenched by adding 2m HCl (5 mL). The mixture was
extracted with ethyl acetate (2 Â 20 mL), and the organic extracts were
combined, washed with saturated NaHCO , dried over MgSO , and
3
4
concentrated in vacuo. The residue was purified by column chromatog-
raphy on silica gel with hexane/ethyl acetate (64/1) to give 1a in 99% yield.
R
f
0.42 (hexane/ethyl acetate, 8/1); IR (neat): nÄ 3400 (s), 1500 (s), 1460
� 1 1
(
s), 1050 (s), 970 (s), 760 cm (s); H NMR (400 MHz, CDCl
3
, TMS): d
0
.98 (t, J 7.3 Hz, 3H), 1.86 (brs, 1H), 2.05 (brdq, J 6.2, 7.3 Hz, 2H), 2.39
(
(
(
1
m, 1H, coalesces to brdd, J 8.1, 13.9 Hz on irradiation at d 5.40), 2.47
m, 1H, coalesces to brdd, J 4.8, 13.9 Hz on irradiation at d 5.40), 4.68
dd, J 4.8, 8.1 Hz, 1H), 5.40 (ddm, J 6.2, 15.4 Hz, 1H), 5.63 (brdt, J
1
3
3
5.4, 6.2 Hz, 1H), 7.24 ± 7.29 (m, 5H); C NMR (100 MHz, CDCl , TMS):
d 13.7, 25.6, 42.7, 73.5, 124.5, 125.8, 127.3, 128.3, 136.6, 144.1; HR-MS calcd
for C12
H
16O: 176.1201; found (%): 176.1195 (2) [M ], 107 (100), 77 (23), 69
(
3).
[19] Chemical shifts were calculated with the program CS ChemNMR Pro
(
CambridgeSoft Corpration, Cambridge, MA).
Received: May 17, 1999
Revised version: July 12, 1999 [Z13418IE]
German version: Angew. Chem. 1999, 111, 3586 ± 3589
[20] Relevant precedents that support the transformation of II into III,
that is, allylation of carbonyls by transition metal ± 1,3-diene com-
plexes at the C1 terminus: a) G. Erker, Angew. Chem. 1989, 101, 411 ±
4
26; Angew. Chem. Int. Ed. Engl. 1989, 28, 397 ± 412; b) G. Wilke,
Angew. Chem. 1988, 100, 189 ± 211; Angew. Chem. Int. Ed. Engl. 1988,
Keywords: aldehydes ´ homogeneous catalysis ´ multicom-
ponent reactions ´ nickel ´ zinc
2
7, 185 ± 206; c) H. Yasuda, A. Nakamura, Angew. Chem. 1987, 99,
7
45 ± 764; Angew. Chem. Int. Ed. Engl. 1987, 26, 723 ± 742. An
II
alternative mechanism which relies on the addition of MeNi to 1,3-
butadiene followed by the allylation of the carbonyl compounds by
the thus-formed 1-ethyl-p-allylnickel complex is less probable, since
1-ethyl-p-allylnickel is expected to selectively react with carbonyls at
C1 to give 2-ethyl-3-buten-1-ols: d) R. Baker, M. J. Crimmin, J. Chem.
Soc. Perkin Trans. 1 1979, 1264 ± 1267; e) S. Akutagawa, Bull. Chem.
Soc. Jpn. 1976, 49, 3646 ± 3648; see also: f) K. Ohno, T. Mitsuyasu, J.
Tsuji, Tetrahedron 1972, 28, 3705 ± 3720.
[
1] a) R. Benn, N. Büssemeier, S. Holle, P. W. Jolly, R. Mynott, I.
Tkatchenko, G. Wilke, J. Organomet. Chem. 1985, 279, 63 ± 86; b) G.
Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kröner, W.
Oberkirch, K. Tanaka, E. Steinbrücke, D. Walter, H. Zimmermann,
Angew. Chem. 1966, 78, 157 ± 172; Angew. Chem. Int. Ed. Engl. 1966,
5
, 151 ± 164.
2] a) Y. Wang, A. M. Arif, F. G. West, J. Am. Chem. Soc. 1999, 121, 876 ±
77; b) J. M. Takacs, M. R. Jaber, A. V. Strakhov, R. V. Athalye,
[
[21] a) D. Walther, E. Dinjus, H. Görls, J. Sieler, O. Lindqvist, L. Andersen,
J. Organomet. Chem. 1985, 286, 103 ± 114; b) H. Hoberg, D. Schaeffer,
J. Organomet. Chem. 1983, 255, C15 ± C17.
[22] a) H. Schenkluhn, R. Berger, B. Pittel, M. Zähres, Transition Met.
Chem. (London) 1981, 6, 277 ± 287; b) H. Schenkluhn, H. Bandmann,
Transition Met. Chem. (London) 1981, 6, 287 ± 295.
[23] Chelation control of regioselectivity for Ni-catalyzed reactions:
a) C. N. Farthing, P. Kocovsky, J. Am. Chem. Soc. 1998, 120, 6661 ±
6662; b) M. T. Didiuk, J. P. Morken, A. H. Hoveyda, J. Am. Chem.
Soc. 1995, 117, 7273 ± 7274.
[24] Under similar conditions, bis(phenylethynyl)zinc reacted only with
benzaldehyde to provide 1,3-diphenyl-2-propyn-1-ol (98%).
8
Tetrahedron Lett. 1998, 39, 5003 ± 5006; c) J. M. Takacs, F. Clement, J.
Zhu, S. V. Chandramouli, X. Gong, J. Am. Chem. Soc. 1997, 119,
5804 ± 5817; d) M. Murakami, K. Itami, Y. Ito, J. Am. Chem. Soc. 1997,
119, 7163 ± 7164; e) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996,
96, 49 ± 92.
[
[
3] a) M. Zaidlewicz, J. Meller, Tetrahedron Lett. 1997, 38, 7279 ± 7282;
b) M. Satoh, Y. Nomoto, N. Miyaura, A. Suzuki, Tetrahedron Lett.
1989, 30, 3789 ± 3792.
4] a) K. Kitayama, H. Tsuji, Y. Uozumi, T. Hayashi, Tetrahedron Lett.
1996, 37, 4169 ± 4172; b) C. Bismara, R. D. Fabio, D. Donati, T. Rossi,
3
388
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3822-3388 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 22