5-HALOBENZOTHIOPHENE ANALOGUES OF MELATONIN
65
Table 1. The physical properties and mt1 and MT2 receptor-binding af®nity of the benzothiophene compounds.
Recrystallization
solvent
IC50 mt1
(M)
IC50 MT2
(M)
Rate selectivity
(mt1=MT2)
Compound
X
±
R
±
Mp (ꢀC)
±
À10
À10
Melatonin
1f
1h
1i
1k
1l
1m
1o
1p
1q
2f
2g
2h
2i
2j
2k
2l
2m
2n
2o
±
2Á0 6 10
2Á3 6 10
1Á0 6 10
±
5Á3 6 10
9Á3 6 10
2Á0 6 10
±
0Á40
2Á46
4Á95
±
9Á77
1Á10
0Á20
1Á74
±
À09
À08
À10
À09
Br CH3
Br CF3
Br cyclopropyl
Br CH2CH CH2
Br CH CHC6H5
134±136 Toluene
144±146 Toluene
166±168 Toluene
À09
À05
À06
À10
À06
À05
À06
90±91
Toluene
2Á1 6 10
2Á1 6 10
9Á3 6 10
1Á3 6 10
152±153 Toluene±cyclohexanea
> 6 10
Br CH2CH CHC6H5 130±131 Toluene±cyclohexanea 2Á6 6 10
Br 2-furyl
Br 3,4-Cl2C6H3
Br CH2C6H5
87±88
Toluene±cyclohexanea 2Á1 6 10À06 1Á2 6 10
144±146 Toluene
147±148 Toluene
129±130 Toluene
±
±
±
±
±
À09
À08
À08
À08
À09
À09
À05
À06
À07
À09
À08
À08
À08
À09
À10
À05
À06
À07
À06
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
CH3
(CH2)3Cl
CF3
cyclopropyl
CH CH2
CH2CH CH2
CH CHC6H5
6Á5 6 10
1Á4 6 10
6Á3 6 10
3Á8 6 10
9Á8 6 10
1Á6 6 10
1Á2 6 10
1Á1 6 10
2Á0 6 10
4Á6 6 10
3Á6 6 10
> 6 10
1Á0 6 10
1Á1 6 10
4Á00
1Á15
5Á90
1Á89
2Á13
4Á47
1Á00
3Á20
2Á28
1Á28
83±84
Cyclohexane
132±134 Toluene
161±163 Toluene
111±113 Toluene
76±77
Toluene±cyclohexanea 1Á6 6 10
162±163 Toluene±cyclohexanea
> 6 10
3Á3 6 10
CH2CH CHC6H5 116±117 Cyclohexane
ꢁ -CH3
79±80
70±71
Toluene±cyclohexanea 2Á6 6 10
2-furyl
Toluene±cyclohexanea 2Á4 6 10À06 1Á9 6 10
aIn the proportions 4 : 1, respectively.
Conway, S., Drew, E. J., Canning, S. J., Barett, P., Jockers, R.,
Ã
pounds 1f and 2f, which can be considered as the
direct 5-halobenzothiophene analogues of mela-
tonin, have slightly less af®nity than melatonin.
Furthermore, most of the 5-bromo compounds (1f,
1h, 1k±1m, 1o) have similar af®nity which is even
higher than that of their 5-chloro analogues (2f, 2h,
2k±2m, 2o).
Strosberg, A. D., Guardiola-Lemaõtre, B., Delagrange, P.,
Morgan, P. J. (1997) Identi®cation of Mel1a melatonin
receptors in the human embryonic kidney cell line HEK
293: evidence of G protein-coupled melatonin receptors
which do not mediate the inhibition of stimulated cyclic
AMP levels. FEBS Lett. 407: 121±126
Depreux, P., Lesieur, D., Ait Mansour, H., Morgan, P., Howell,
H. E., Renard, P., Caignard, D. H., Pfeiffer, B., Delagrange,
Except for the allylic compounds (1k, 2k), which
in each series studied have the best af®nity, repla-
cement of the methyl group of the amidic group by
another substituent results, overall, in a usually
signi®cant reduction of af®nity according to the
nature and steric hindrance of the substituents,
especially when aromatic or conjugated aromatic
groups are present (1l, 1m, 1o, 2l, 2m, 2o).
With regard to selectivity, most of the 5-halo-
benzothiophene derivatives are slightly selective
towards the MT2 binding sites.
These results show that the methoxy group is not
essential requirement for high af®nity. This calls
into question the suggestion that the methoxy
group, which is likely to form a hydrogen-bond
with a receptor residue, is responsible for the
activity and af®nity of melatonin.
Ã
P., Guardiola-Lemaõtre, B., Yous, S., Demarque, A., Adam,
G., Andrieux, J. (1994) Synthesis and structure-activity
relationships of novel naphthalenic and bioisosteric related
amidic derivatives as melatonin receptor ligands. J. Med.
Chem. 37: 3231±3239
Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., Mori, W.
(1958) Isolation of melatonin, the pineal gland factor that
lightens melanocytes. J. Am. Chem. Soc. 80: 2587
Lindberg, U. H., Nylen, B., Akerman, B. (1968) Potential local
anaesthetics. I. Basic N-(a-cycloalkylbenzyl) acylamides and
some related compounds. Acta Pharm. Suec. 5: 429±440
Marshall, P. G., Henderson, J. R., Chapman, N. B., Clarke, K.,
Iddon, B., James, J. W., Hedge, M. J. (1969) Novel ben-
zothiophene compounds, compositions containing them and
processes for their manufacture. Appl. Brit. Patent 1,174,411
Reppert, S. M., Weaver, D. R., Ebisawa, T. (1994) Cloning and
characterization of a mammalian melatonin receptor that
mediates reproductive and circadian responses. Neuron 13:
1177±1185
Reppert, S. M., Godson, C., Mahle, C. D., Weaver, D. R.,
Slaugenhaupt, S. A., Gusella, J. F. (1995) Molecular char-
acterization of a second melatonin receptor expressed in
human retina and brain: the Mel1b melatonin receptor. Proc.
Natl Acad. Sci. USA 92: 8734±8738
Reppert, S. M., Weaver, D. R., Godson, C. (1996) Melatonin
receptors step into the light: cloning and classi®cation of
subtypes. Trends Pharmacol. Sci. 17: 100±102
References
Bradford, M. M. (1976) A rapid and sensitive method for the
quanti®cation of microgram quantities of protein using the
principle of dye binding. Anal. Biochem. 72: 248±254
Brown, H. C., Heim, P., Yoon, N. M. (1970) Diborane in
tetrahydrofuran. J. Am. Chem. Soc. 92: 1637±1646
Yous, S., Andrieux, J., Howell, H. E., Morgan, P. J., Renard,
Ã
P., Pfeiffer, B., Lesieur, D., Guardiola-Lemaõtre, B. (1992)
Novel naphthalenic ligands with high af®nity for the mela-
tonin receptor. J. Med. Chem. 35: 1484±1486