ChemCatChem
10.1002/cctc.201800159
COMMUNICATION
vinylsilane products in these catalytic reactions was less than 1%.
When using hexenes, similar conversions are attained, however
the ratio of vinylsilanes increases, to reach 7%, 16% and 14% of
the product mixture in the reaction of trans-3-, trans-2- and 1-
hexene, respectively (See supporting information). Longer chain
in octanes might explain the higher allylsilane percentage, as the
steric repulsion would lead towards selective β-hydride
[1]
a) I. Fleming In Comprehensive Organic Chemistry II; D. Burton, W. D.
Ollis, Eds.; Pergamon Press: Oxford, U.K. 1979; p 577. b) D. R. Thomas
Comprehensive Organometallic Chemistry; W. W. Abel, F. G. A. Stone,
G. Wilkinson, Eds.; Pergamon Press, Oxford, U.K. 1995; p 114.
a) J. Michl, Chem. Rev. 1995, 95, 1135. b) S. Bracegirdle, E. A.
Anderson, Chem. Soc. Rev. 2010, 39, 4114.
[
[
2]
3]
a) I. Ojima, In The Chemistry of Organic Silicon Compounds; S. Patai, Z.
Rappoport, Eds.; Wiley-Interscience: New York, 1989; Vol. 2, p 1479. b)
T. Nakajima, S. Shimada, RSC Adv. 2015, 5, 20603.
[
16c]
elimination in the reaction intermediate.
Higher amounts of
dehydrogenative silylation products were reached, from which 8
was the main species. Allyltrimethylsilane afforded selective 79%
conversion to 10, whereas 4-bromo-1-butene underwent very
poor reaction. The formation of allylsilane products in the
dehydrogenative silylation of styrene, α-methylstyrene, 4-chloro-
α-methylstyrene and tbe is not possible, for they can only yield the
vinylsilane species. All of these alkenes exhibit very high
selectivity towards the hydrosilylated product except styrene, in
which vinylsilane 14 is present in a 68% of the silylated product.
This could once again be explained by steric repulsion caused by
methyl groups in α-methylstyrene, 4-chloro-α-methylstyrene, and
tbe when the silylated product is coordinated to Ir that make β-
[4]
J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc. 1957, 79,
9
74.
[
[
5]
6]
P. B. Hitchcock, F. M. Lappert, N. J. W. Warhurst, Angew. Chem. Int.
Ed. 1991, 30, 438; Angew. Chem. 1991, 103, 439.
a) K. Hirano, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2007, 129,
6
9
094. b) J. C. Mitchener, M. S. Wrighton, J. Am. Chem. Soc. 1981, 103,
75. c) S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004,
126, 13794. d) Z. Mo, J. Xiao, Y. Gao, L. Deng, J. Am. Chem. Soc. 2014,
136, 17414. e) C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B.
Q. Mercado, D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2015, 137,
1
3244.
[
[
7]
8]
B. Marciniec, H. Maciejewski, C. Pietraszuk, P. Pawluc, Hydrosilylation:
A Comprehensive Review on Recent Advances; Springer: London, 2009;
p VII-XII.
[
16c]
hydride elimination unfavourable.
Hydrosilylation of tbe
a) G. R. Jones, Y. Landais, Tetrahedron, 1996, 52, 7599. b) Y. Hatanaka
T. Hiyama, J. Org. Chem. 1988, 53, 918. c) A. Hosomi, H. Sakurai,
Tetrahedron Lett. 1976, 1295.
successfully yielded linear product 12 to reach 89% of conversion.
Notably, the hydrosilylation products of α-methylstyrene and 4-
chloro-α-methylstyrene with Et
3
SiH (15 and 16) were obtained in
[9]
a) B. Marciniec, Coord. Chem. Rev. 2005, 249, 2374. b) M. Lapointe, F.
C. Rix, M. Brookhart, J. Am. Chem. Soc. 1997, 119, 906.
a) Y. Hori, T. Mitsudo, Y. Watanabe, Bull. Chem. Soc. Jpn. 1988, 61,
higher yield (54%) when using the iridium(III) catalyst 4 than when
using the rhodium(III) analogue. In alkene dehydrogenative
silylation reactions, the use of a sacrificial hydrogen acceptor
[
10]
3
011. b)M. P. Doyle, G. A. Devora, A. Nefedov, K. G. High,
[
10-13]
Organometallics, 1992, 11, 549. c) A. Millan, E. Towns, P. M. Maitlis, J.
Chem. Soc., Chem. Commun. 1981, 673. d) A. Bokka, J. Jeon, Org. Lett.
(
SHA) is usually necessary.
The SHA can be the same
alkene that reacts with hydrogen to form an alkane. In our case,
alkane is not observed upon completion of the reaction. This fact
shows that under our conditions, the use of a SHA is no necessary
2
016, 18, 5324.
[
11] R. N. Naumov, M. Itazaki, M. Kamitani, H Nakazawa, J. Am. Chem. Soc.
2012, 134, 804.
1
0b
as has been previously reported for other catalytic systems.
In
[12] J. Gu, C. Cai, Chem. Commun. 2016, 52, 10779.
order to check this, the catalytic dehydrogenative silylation was
carried out adding an extra equivalent of trans-2-octene (SHA). At
the end of this reaction the formation of triethyl(2-octenyl)silane
was equal and octane was not observed (Figure S.67. Supp. Info.).
[13] a)D. C. Apple, K. A. Brady, J. M. Chance, N. E. Heard, T. A. Nile, J. Mol.
Catal. 1985, 29, 55. b) M. A. Fernandez, L. A. Oro, J. Mol. Catal. 1986,
3
7, 151. c) D. Wechsler, A. Myers, R. McDonald, M. J. Ferguson, M.
Stradiotto, Inorg. Chem. 2006, 45, 4562. d) E. Calimano, T. D. Tilley, J.
Am. Chem. Soc. 2009, 131, 11161. e) C. Cheng, E. M. Simmons, J. F.
Hartwig, Angew. Chem. Int. Ed. 2013, 52, 8984; Angew. Chem. 2013,
In conclusion, an unsaturated silyl-hydrido-Rh(III) complex
containing a Si,S,S-terdentate ligand is able to catalyze solvent
free tandem isomerization-hydrosilylation of internal alkenes at
room temperature to yield linear silanes. The synthesis of an
analogue novel iridium(III) complex was also reported. This silyl-
hydrido-Ir(III) compound is active in one of the few examples of
catalytic tandem isomerization-dehydrogenative silylation of
alkenes.
1
25, 9154. f) J. A. Muchnij, F. B. Kwaramba, R. J. Rahaim, Org. Lett.
2014, 16, 1330.
[14] X. Jia, Z. Huang, Nat. Chem. 2016, 8, 157.
[15] a) I. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew.
Chem. Int. Ed. 2015, 54, 14523; Angew. Chem. 2015, 127, 14731. b) V.
Srinivas, Y. Nakajima, W. Ando, K. Sato, S. Shimada, S. Catal. Sci.
Tecnol. 2015, 5, 2081.
[
16] a) A. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209. b) D.
Noda, A. Tahara, Y. Sunada, H. Nagashima, J. Am. Chem. Soc. 2016,
1
38, 2480. c) C. C. H. Atienza, T. Diao, K. J. Weller, S. A. Nye, K. L.
Lewis, J. G. P. Delis, J. L. Boyer, A. K. Roy, P. J. Chirik, J. Am. Chem.
Soc. 2014, 136, 12108.
Acknowledgements ((optional))
[
17] I. Buslov, F. Song, X. Hu, Angew. Chem. Int. Ed. 2016, 55, 12295; Angew.
Chem. 2016, 128, 12483.
Financial support by Ministerio de Economía y Competitividad
[
18] S. Azpeitia, M. A. Garralda, M. A. Huertos, ChemCatChem. 2017, 9,
(
CTQ2015-65268-C2-2-P
and
CTQ2015-65268-C2-1-P),
1
901.
Gobierno Vasco and Universidad del País Vasco (UPV/EHU) is
gratefully acknowledged.
[19]
S. Azpeitia, B. Fernandez, M. A. Garralda, M. A. Huertos, Eur. J. Inorg.
Chem. 2016, 2891.
[
20] CCDC 1554040 (2), 1554041 (3) contain the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
Keywords: Remote Alkenes • Hydrosilylation • Dehydrogenative
Silylation • Rhodium • Iridium
This article is protected by copyright. All rights reserved.