Full Paper
m/z = 361.3 [M + Na]+. C21H26N2O2 (338.4): calcd. C 74.53, H 7.74,
N 8.28; found C 74.68, H 7.89, N 8.11. The remaining compounds
from chemset 4 were synthesized under essentially identical condi-
tions.
R. A. Doroschuk, R. A. Doroschuk, L. N. Babichenko, A. I. Konovets, A.
Tolmachev, ACS Comb. Sci. 2015, 17, 348–354.
[13] A. V. Bogolubsky, Y. S. Moroz, P. K. Mykhailiuk, S. E. Pipko, A. V. Zhemera,
A. I. Konovets, O. O. Stepaniuk, I. S. Myronchuk, Y. V. Dmytriv, R. A. Doros-
chuk, O. A. Zaporozhets, A. Tolmachev, ACS Comb. Sci. 2015, 17, 615–
622.
Procedure B: An acetonitrile solution (1 mL) of bis(2,2,2-trifluoro-
ethyl) oxalate (1 mmol) and N-ethyl-1-(4-fluorophenyl)ethan-1-
amine 2{8} (1 mmol) was kept at room temperature for 12 h in a
sealed vial (8 mL). Then, N-methyl-1-phenylmethanamine 2{5}
(1 mmol) was added, and the resulting mixture was heated at
100 °C for 36 h to ensure full conversion of the ester monoamide.
Then, the solvent was evaporated in vacuo. The crude mixture was
dissolved in chloroform (3 mL), and the solution was washed with
HCOOH (10 %), and water. The organic phase was evaporated. The
crude product was purified by flash chromatography to give N1-
benzyl-N2-ethyl-N2-[1-(4-fluorophenyl)ethyl]-N1-methyloxamide
(144 mg, 42 %) as an oil. 1H NMR (500 MHz, [D6]DMSO): δ = 0.85
(m, 3 H, CH3), 1.55 (m, 3 H, CH3), 2.7–2.9 (m, 3 H, CH3), 3.12 (m, 2
H, CH2), 4.35–4.65 (m, 2 H, CH2), 4.88, 5.54 (m, 1 H, CH), 7.15–7.55
(m, 9 H, Ar) ppm. 13C NMR (125.7 MHz, [D6]DMSO): δ = 13.5 (2),
15.6, 15.7, 16.9 (2), 17.9, 30.8 (2), 34.4, 34.8, 35.7, 35.9, 48.5, 48.6,
50.7, 50.9, 52.6, 52.8, 55.2, 115.2 (2), 115.4 (2), 127.6, 127.8, 128 (m),
128.7 (m), 129.4 (m), 129.6 (m), 135.8 (m), 135.9 (m), 136.0, 136.6
(m), 160.6 (m), 162.6 (m), 164.3 (m), 164.9 (m), 165.1 ppm. MS (APSI):
m/z = 359.2 [M + OH]–. C20H23FN2O2 (342.4): calcd. C 70.15, H 6.77,
N 8.18; found C 69.92, H 6.93, N 8.01. The remaining compounds
from chemset 5 were synthesized under essentially identical condi-
tions.
[14] M. L. Bolognesi, A. Cavalli, V. Andrisano, M. Bartolini, R. Banzi, A. Anto-
nello, M. Rosini, C. Melchiorre, Farmaco 2003, 58, 917–928.
[15] D. Plouffe, A. Brinker, C. McNamara, K. Henson, N. Kato, K. Kuhen, A.
Nagle, F. Adrián, J. T. Matzen, P. Anderson, T. G. Nam, N. S. Gray, A. Chat-
terjee, J. Janes, S. F. Yan, R. Trager, J. S. Caldwell, P. G. Schultz, Y. Zhou,
E. A. Winzeler, Proc. Natl. Acad. Sci. USA 2008, 105, 9059–9064.
[16] F.-J. Gamo, L. M. Sanz, J. Vidal, C. de Cozar, E. Alvarez, J.-L. Lavandera,
D. E. Vanderwall, D. V. S. Green, V. Kumar, S. Hasan, J. R. Brown, C. E.
Peishoff, L. R. Cardon, J. F. Garcia-Bustos, Nature 2010, 465, 305–310.
[17] J. P. Guare, J. S. Wai, R. P. Gomez, N. J. Anthony, S. M. Jolly, A. R. Cortes,
J. P. Vacca, P. J. Felock, K. A. Stillmock, W. A. Schleif, G. Moyer, L. J. Gabryel-
ski, L. Jin, I.-W. Chen, D. J. Hazuda, S. D. Young, Bioorg. Med. Chem. Lett.
2006, 16, 2900–2904.
[18] A. Low, N. Prada, M. Topper, F. Vaida, D. Castor, H. Mohri, D. Hazuda, M.
Muesing, M. Markowitz, Antimicrob. Agents Chemother. 2009, 53, 4275–
4282.
[19] R. G. Wilkinson, M. B. Cantrall, R. G. Shepherd, J. Med. Pharm. Chem. 1962,
5, 835–845.
[20] J. B. Lambert, D. E. Huseland, G. Wang, Synthesis 1986, 657–658.
[21] B. K. Vriesema, M. Lemaire, J. Buter, R. M. Kellogg, J. Org. Chem. 1986,
51, 5169–5177.
[22] B. M. Trost, R. C. Bunt, R. C. Lemoine, T. L. Calkins, J. Am. Chem. Soc. 2000,
122, 5968–5976.
[23] H. Häusler, R. P. Kawakami, E. Mlaker, W. B. Severn, A. E. Stütz, Bioorg.
Med. Chem. Lett. 2001, 11, 1679–1681.
[24] P. G. Andersson, F. Johansson, D. Tanner, Tetrahedron 1998, 54, 11549–
11566.
[25] S. V. Malhotra, H. C. Brown, RSC Adv. 2014, 4, 14264–14269.
[26] V. G. Albano, M. Bandini, M. Monari, E. Marcucci, F. Piccinelli, A. Umani-
Ronchi, J. Org. Chem. 2006, 71, 6451–6458.
Supporting Information (see footnote on the first page of this
article): Analytical data for selected synthesized compounds; LC–MS
and NMR spectra.
[27] P. L. Arnold, M. Rodden, K. M. Davis, A. C. Scarisbrick, A. J. Blake, C.
Wilson, Chem. Commun. 2004, 1612–1613.
[28] O. Kühl, Chem. Soc. Rev. 2007, 36, 592–607.
[29] M. Magrez, Y. Le Guen, O. Baslé, C. Crévisy, M. Mauduit, Chem. Eur. J.
2013, 19, 1199–1203.
Keywords: Synthetic methods · Combinatorial chemistry ·
Amides · Amines · Esters · Aminolysis · Steric hindrance
[30] D. Rix, S. Labat, L. Toupet, C. Crévisy, M. Mauduit, Eur. J. Inorg. Chem.
2009, 1989–1999.
[31] Z. Džolić, M. Cametti, A. Dalla Cort, L. Mandolini, M. Žinić, Chem. Com-
mun. 2007, 3535–3537.
[32] Z. Džolić, M. Cametti, D. Milić, M. Žinić, Chem. Eur. J. 2013, 19, 5411–
5416.
[33] J. B. Hynes, G. R. Gale, L. M. Atkins, D. M. Cline, K. F. Hill, J. Med. Chem.
1973, 16, 576–578.
[34] X. Luo, C. Li, Y. Liang, Chem. Commun. 2000, 2091–2092.
[35] M. L. Testa, E. Zaballos, R. J. Zaragozá, Tetrahedron 2012, 68, 9583–9591.
[36] I. De Aguirre, J. Collot, Bull. Soc. Chim. Belg. 1989, 98, 19–30.
[37] P. Ballinger, F. A. Long, J. Am. Chem. Soc. 1959, 81, 1050–1053.
[38] P. Ballinger, F. A. Long, J. Am. Chem. Soc. 1960, 82, 795–798.
[39] T. Kanzian, T. A. Nigst, A. Maier, S. Pichl, H. Mayr, Eur. J. Org. Chem. 2009,
6379–6385.
[40] A. R. Katritzky, J. R. Levell, D. P. M. Pleynet, Synthesis 1998, 153–156.
[41] J. R. Falck, R. Kodela, R. Manne, K. R. Atcha, N. Puli, N. Dubasi, V. L. Man-
thati, J. H. Capdevila, X.-Y. Yi, D. H. Goldman, C. Morisseau, B. D. Ham-
mock, W. B. Campbell, J. Med. Chem. 2009, 52, 5069–5075.
[42] D. N. Kevill, B.-C. Park, J. B. Kyong, J. Org. Chem. 2005, 70, 9032–
9035.
[1] F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756.
[2] F. Lovering, Med. Chem. Commun. 2013, 4, 515–519.
[3] A. D. Morley, A. Pugliese, K. Birchall, J. Bower, P. Brennan, N. Brown, T.
Chapman, M. Drysdale, I. H. Gilbert, S. Hoelder, A. Jordan, S. V. Ley, A.
Merritt, D. Miller, M. E. Swarbrick, P. G. Wyatt, Drug Discovery Today 2013,
18, 1221–1227.
[4] T. J. Ritchie, S. J. F. Macdonald, Drug Discovery Today 2009, 14, 1011–
1020.
[5] T. J. Ritchie, S. J. F. Macdonald, R. J. Young, S. D. Pickett, Drug Discovery
Today 2011, 16, 164–171.
[6] Y. Yang, O. Engkvist, A. Llinàs, H. Chen, J. Med. Chem. 2012, 55, 3667–
3677.
[7] M. Ishikawa, Y. Hashimoto, J. Med. Chem. 2011, 54, 1539–1554.
[8] A. V. Bogolubsky, Y. S. Moroz, P. K. Mykhailiuk, S. E. Pipko, A. I. Konovets,
I. V. Sadkova, A. Tolmachev, ACS Comb. Sci. 2014, 16, 192–197.
[9] A. V. Bogolubsky, Y. S. Moroz, P. K. Mykhailiuk, D. S. Granat, S. E. Pipko,
A. I. Konovets, R. Doroschuk, A. Tolmachev, ACS Comb. Sci. 2014, 16, 303–
308.
[10] A. V. Bogolubsky, Y. S. Moroz, P. K. Mykhailiuk, D. M. Panov, S. E. Pipko,
A. I. Konovets, A. Tolmachev, ACS Comb. Sci. 2014, 16, 375–380.
[11] A. Bogolubsky, Y. Moroz, S. Pipko, D. Panov, A. Konovets, R. Doroschuk,
A. Tolmachev, Synthesis 2014, 46, 1765–1772.
[43] M. F. Grünberg, L. J. Gooßen, Chem. Eur. J. 2013, 19, 7334–7337.
[12] A. V. Bogolubsky, Y. S. Moroz, P. K. Mykhailiuk, E. N. Ostapchuk, A. V.
Rudnichenko, Y. V. Dmytriv, A. N. Bondar, O. A. Zaporozhets, S. E. Pipko,
Received: December 16, 2015
Published Online: March 30, 2016
Eur. J. Org. Chem. 2016, 2120–2130
2130
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim