W.-C. Chao et al. / Polymer 52 (2011) 2414e2421
2421
Table 6
TETA-TBAC/mPAN membrane. The solution effect primarily
controlled the pervaporation separation behavior of the polyamide
thin-film composite membrane in the dehydration of a 90 wt%
aqueous ethanol solution at 25 ꢀC.
Effect of the acyl chloride structure on the sorption and diffusion properties of the
polyamide thin-film composite membranes for a 90 wt% aqueous ethanol solution at
25 ꢀC.
Membranes
aP
aS
59 ꢂ 28
129 ꢂ 39
aD
TETA-NTAC/mPAN
TETA-TBAC/mPAN
558 ꢂ 261
326 ꢂ 159
6.7 ꢂ 2.1
2.7 ꢂ 0.9
Acknowledgements
aP ¼ pervaporation separation factor.
aS ¼ solution separation factor.
aD ¼ diffusion separation factor.
The authors wish to sincerely thank the Ministry of Economic
Affairs, the Ministry of Education Affairs and the National Science
and Technology Program-Energy from NSC of Taiwan for financially
supporting this work.
higher than those of the TETA-TBAC polyamide layer, that is, the size
and concentration of the free volume for the TETA-NTAC polyamide
layer are both higher than those for the TETA-TBAC polyamide layer,
resulting in a higher pervaporation performance of the TETA-NTAC/
mPAN membrane was obtained.
References
[1] Kwak SY, Jung SG, Yoon YS, Ihm DW. J Polym Sci Part B Polym Phys 1999;37:
1429e40.
The effect of the acyl chloride structure on the sorption and
diffusion of a 90 wt % aqueous ethanol solution through the poly-
amide thin-film composite membranes was investigated at 25 ꢀC,
and the results are shown in Table 6. The results indicate that aS was
higher than aD for all polyamide thin-film composite membranes,
which implies that the solution dominates the separation behavior
of the polyamide thin-film composite membranes. Compared with
the TETA-NTAC/mPAN composite membrane, the TETA-TBAC/mPAN
composite membrane had a higher aS and a lower aD. The higher aS
for the TETA-TBAC polyamide layer resulted from a lower surface
water contact angle and a higher surface roughness (Tables 3 and 4),
signifying a higher hydrophilicity and effective contact area. Thus,
the permeation rate of TETA-NTAC/mPAN membranes and the
water concentration of the resultant permeate were higher than
those of the TETA-TBAC/mPAN composite membranes.
[2] Kim CK, Kim JH, Roh IJ, Kim JJ. J Membr Sci 2000;165:189e99.
[3] Rao AP, Joshi SV, Trivedi JJ, Devmurari CV, Shah VJ. J Membr Sci 2003;211:
13e24.
[4] Louie JS, Pinnau I, Ciobanu I, Ishida KP, Ng A, Reinhard M. J Membr Sci 2006;
280:762e70.
[5] Li L, Zhang S, Zhang X, Zheng G. J Membr Sci 2007;289:258e67.
[6] Oh NW, Jegal J, Lee KH. J Appl Polym Sci 2001;80:2729e36.
[7] Chen SH, Chang DJ, Liou RM, Hsu CS, Lin SS. J Appl Polym Sci 2002;83:1112e8.
[8] Mohammad AW, Hilal N, Seman MNA. J Appl Polym Sci 2005;96:605e12.
[9] Verissimo S, Peinemann KV, Bordado J. J Membr Sci 2006;279:266e75.
[10] Yang F, Zhang S, Yang D, Jian X. J Membr Sci 2007;301:85e92.
[11] Huang SH, Li CL, Hu CC, Tsai HA, Lee KR, Lai JY. Desalination 2006;200:387e9.
[12] Li CL, Huang SH, Liaw DJ, Lee KR, Lai JY. Sep Purif Technol 2008;62:694e701.
[13] Huang SH, Hsu CJ, Liaw DJ, Hu CC, Lee KR, Lai JY. J Membr Sci 2008;307:73e81.
[14] Huang SH, Lin WL, Liaw DJ, Li CL, Kao ST, Wang DM, et al. J Membr Sci 2008;
322:139e45.
[15] Huang SH, Jiang GJ, Liaw DJ, Li CL, Hu CC, Lee KR, et al. J Appl Polym Sci 2009;
114:1511e22.
[16] Wang ZF, Wang B, Ding XM, Zhang M, Liu LM, Qi N, et al. J Membr Sci 2004;
241:355e61.
[17] Mondal S, Hu JL, Yong Z. J Membr Sci 2006;280:427e32.
[18] Wang ZF, Wang B, Qi N, Ding XM, Hu JL. Mater Chem Phys 2004;88:212e6.
[19] Honda Y, Shimada T, Tashiro M, Kimura N, Yoshida Y, Isoyama G, et al. Radiat
Phys Chem 2007;76:169e71.
[20] Oh NW, Jegal J, Lee KH. J Appl Polym Sci 2001;80:1854e62.
[21] Chen HM, Hung WS, Lo CH, Huang SH, Cheng ML, Liu G, et al. Macromolecules
2007;40:7542e57.
4. Conclusion
The polyamide thin-film composite membranes were success-
fully prepared via interfacial polymerization of TETA with NTAC or
TBAC and were applied to the dehydration of an aqueous ethanol
solution. The following conclusions were obtained:
[22] Kirkegaard P, Pederson NJ, Eldrup M. PATFIT package. Roskilde: Riso National
Laboratory; 1989.
As a result of the PAS experiments, the TETA-NTAC polyamide
layer of the composite membrane had a higher S parameter,
a higher s3 (free volume size), a higher I3 (free volume concentra-
tion), as well as a thicker polyamide layer thickness, compared with
the TETA-TBAC polyamide layer.
From the analyses of the XPS, AFM and water contact angle
measurements, the TETA-NTAC/mPAN membrane had higher
degree of crosslinking, lower surface roughness of the active layer
and lower hydrophilicity than the TETA-TBAC/mPAN membrane.
[23] Teng MY, Lee KR, Fan SC, Liaw DJ, Huang J, Lai JY. J Membr Sci 2000;164:
241e9.
[24] Lee KR, Lai JY. J Appl Polym Sci 1995;57:961e8.
[25] Jean YC, Mallon PE, Schrader DM. Principles and applications of positron &
positronium chemistry. World Scientific Publishing Co. Pvt. Ltd.; 2003
(chapter 11).
[26] Huang SH, Hung WS, Liaw DJ, Li CL, Kao ST, Wang DM, et al. Macromolecules
2008;41:6438e43.
[27] Hung WS, De Guzman M, Huang SH, Lee KR, Jean YC, Lai JY. Macromolecules
2010;43:6127e34.
[28] Luo N, Stewart MJ, Hirt DE, Husson SM, Schwark DW. J Appl Polym Sci 2004;
92:1688e94.
[29] Zhu LP, Zhang XX, Xu L, Du CH, Zhu BK, Xu YY. Colloids Surf B 2007;57:
189e97.
The TETA-NTAC/mPAN membrane showed both
a higher
permeation rate and water concentration in permeate than the