To rationalise the conspicuous endo-orientation of the
acetoxy group of 6, we assume that 6 results from electro-
cyclisation of an acetoxy carbonyl ylide. This carbonyl ylide
may be formed by nitrogen extrusion from an acetoxy
suppdata/cc/b3/b301213a/ for crystallographic data in .cif or other elec-
tronic format.
1
§
0
4
2
Selected data of 15: H NMR (300 Hz, CDCl
3
): 5.25 (ddd, J = 8.0, 5.9,
.6, irrad. at 3.55?dd, J = 8.4, 5.9, H–C(4)); 4.82 (t, J = 5.6, H–C(3));
.61 (dd, J = 8.1, 2.2, irrad. at 3.55?d, J = 8.3, H–C(5)); 4.58 (dd, J = 5.6,
1
,3,4-oxadiazoline. The formation of this oxadiazoline from 4
.2, irrad. at 3.55?d, J = 5.6, H–C(2)); 3.58–3.51 (m, H–C(1)); 2.25 (s,
9
may begin with a well-precedented N-acetoxylation that is
followed by ring expansion to an N-acyldiazene, isomerisation,
acetoxylation, and ring closure.10 This reaction mechanism and
the chemistry of the diazoketone 5 are under investigation.
We thank the Swiss National Science foundation, F.
Hoffmann-La Roche AG, Basel, and Oxford GlycoSystems,
Abingdon, for generous support.
13
MeS); 1.49, 1.33 (2s, Me
12.9 (s, Me
(d, C(1)); 26.5, 24.4 (2q of Me C); 15.6 (q, MeS). ESI-MS: 346, 348, 350,
2 3
C). C NMR (75 Hz, CDCl ): 162.1 (s, CNN);
1
2
C), 86.4, 85.2, 80.3, 79.6 (4d, C(2), C(3), C(4), and C(5)); 53.1
2
+
352 ([M + H] ). Anal. calc. for C11
3 3
H14NO SCl (346.66): C 38.11, H 4.07,
N 4.04, S 9.25, Cl 30.68; found: C 38.32, H 4.30, N 4.04, S 9.20,
3
¶
0.61%.
Selected data of 1·HCl: [a]
2
5
D
D
= +7.5 (c = 0.95, MeOH); [a] = +5.9
5
d
(c = 1.08, MeOH); selected data of 16: m.p. 121.5–122.5 °C; m.p. 121
1b
5b
5h
5i
25
°
C; m.p. 119–120 °C; m.p. 122–123 °C; m.p. 119–121 °C. [a]
D
=
5
b
28
+
18.3 (c = 1.02, CHCl
3
); [a]
D
= +8.5 (c = 0.9, CHCl
3
); [a]
D
= +7.4
). Synthetic (+)-1
-mannosidase with IC50 = 48 nM; (p-nitrophenyl a-
-mannopyranoside, acetate buffer, pH 4.5).
5i
27
5h
(c = 0.45, CHCl
3
); [a]
D
= +16 (c = 0.88, CHCl
3
Notes and references
inhibited jack bean a-
D
D
†
All new compounds showed satisfactory spectroscopic and mass
1
spectrometry data. Selected data of 4: H NMR (300 MHz, CDCl
J = 5.9, H–C(2)); 4.46 (s, exchanged with D O, NH ); 4.39 (br. dd, J = 5.9,
O and irrad. at 3.41?sharp dd, J = 6.2, 2.5, H–C(3));
.12 (ddd, J = 9.3, 4.7, 2.5, H–C(4)); 3.76 (dd, J = 11.8, 9.3, H–C(5)); 3.41
C); 0.90 (s, Me C);
Si). C NMR (75 MHz, CDCl ): 166.4 (s, CNO);
C); 76.7 (d, C(2)); 73.8 (d, C(3)); 65.7 (d, C(4)); 52.1 (d, C(5));
C); 26.0 (q, Me C); 25.6 (q, Me C); 18.5 (s, Me C); 24.35,
4.45 (q, Me Si). Anal. calc. for C14 Si (316.47): C 53.13, H 8.92,
N 8.85; found: C 53.39, H 8.86, N 8.86%. 5: IR (CHCl ): 3019m, 2954w,
932w, 2860w, 2102s, 1679s, 1472w, 1384w, 1375m, 1349m, 1326m,
3
): 4.47 (d,
2
2
1 (a) T. Aoyagi, T. Yamamoto, K. Kojiri, H. Morishima, M. Nagai, M.
Hamada, T. Takeuchi and H. Umezawa, J. Antibiot., 1989, 42, 883; (b)
H. Morishima, K. Kojiri, T. Yamamoto, T. Aoyagi, H. Nakamura and Y.
Iitaka, J. Antibiot., 1989, 42, 1008; (c) J. E. Tropea, G. P. Kaushal, I.
Pastuszak, M. Aoyagi, R. J. Molyneux and A. D. Elbein, Biochemistry,
1990, 29, 10062.
1.9, addition of D
2
4
(ddd, J = 11.8, 4.7, 1.25, H–C(5A)); 1.43, 1.39 (2s, Me
2
3
13
0.123, 0.112 (2s, 2 Me
111.2 (s, Me
27.2 (q, Me
2
3
2
2
3
2
3
2 Their chemistry has been reviewed, see: A. Berecibar, C. Grandjean and
A. Siriwardena, Chem. Rev., 1999, 99, 779.
2
2
28 2 4
H N O
3
3 (a) A. D. Borthwick and K. Biggadike, Tetrahedron, 1992, 48((4)), 571;
(b) R. J. Ferrier and S. Middleton, Chem. Rev., 1993, 93, 2779; (c) A.
Martínez-Grau and J. Marco-Contelles, Chem. Soc. Rev., 1998, 27, 155;
(d) J. Marco-Contelles, C. Alhambra and A. Martínez-Grau, Synlett,
1998, 693; (e) P. I. Dalko and P. Sinaÿ, Angew. Chem., Int. Ed., 1999,
38, 773.
4 (a) A. Vasella, G. J. Davies and M. Böhm, Curr. Opin. Chem. Biol.,
2002, 6, 619; (b) L. Remen and A. Vasella, Helv. Chim. Acta, 2002, 85,
1118; (c) E. Lorthiois, M. Meyyappan and A. Vasella, Chem. Commun.,
2000, 29, 1829; (d) C. V. Ramana and A. Vasella, Helv. Chim. Acta,
2000, 83, 1599.
5 (a) S. Ogawa and Y. Yuming, J. Chem. Soc., Chem. Commun., 1991,
890; (b) S. Knapp and T. G. M. Dhar, J. Org. Chem., 1991, 56, 4096; (c)
B. M. Trost and D. L. Van Vranken, J. Am. Chem. Soc., 1991, 113, 6317;
(d) S. B. King and B. Ganem, J. Am. Chem. Soc., 1991, 113, 5089; (e)
B. M. Trost and D. L. Van Vranken, J. Am. Chem. Soc., 1993, 115, 444;
(f) C. Li and P. L. Fuchs, Tetrahedron Lett., 1994, 35, 5121; (g) S. B.
King and B. Ganem, J. Am. Chem. Soc., 1994, 116, 562; (h) S. Ogawa,
H. Kimura, C. Uchida and T. Ohashi, J. Chem. Soc., Perkin Trans. 1,
1995, 1695; (i) S. Ogawa and Y. Yuming, Bioorg. Med. Chem., 1995, 3,
939; (j) R. Ling and P. S. Mariano, J. Org. Chem., 1998, 63, 6072.
6 For the formation of an N-aminoriburonolactam, see (a) R. R. Schmidt,
K.-H. Jung and P. Hermentin, Chem. Ber., 1978, 111, 3311; (b) for
leading references to the chemistry of non-carbohydrate derived N-
aminolactams, see P. A. S. Smith, Derivatives of Hydrazine and Other
Hydronitrogens Having N–N Bonds, The Benjing/Cummings Publish-
ing, Massachusetts, 1983; (c) R. Braslau, M. O. Anderson, F. Rivera, A.
Jimenez, T. Haddad and J. R. Axon, Tetrahedron, 2002, 58, 5513; (d) R.
D. Miller, P. Gölitz, J. Janssen and J. Lemmens, J. Am. Chem. Soc.,
1984, 106, 7277; (e) R. D. Miller, P. Gölitz, J. Janssen and J. Lemmens,
J. Am. Chem. Soc., 1984, 106, 1508.
2
1
1
306w, 1255m, 1156m, 1133m, 1102m, 873m, 840m. H NMR (300 MHz,
): 5.33 (d, J = 5.3, H–C(2)); 4.62 (t, J ≈ 5.4, H–C(3)); 4.49 (d, J =
.6, H–C(4)); 1.48, 1.39 (2s, Me C); 0.93 (s, Me C); 0.18, 0.16 (2s, Me Si).
): 190.8 (s, CNO); 113.5 (s, Me C); 81.3 (d,
C(2)); 76.3 (d, C(3)); 68.8 (d, C(4)); 27.4, 26.1 (2q, Me C); 25.8 (q, Me C);
8.5 (s, Me Si). Anal. calc. for C14 Si
312.44): C 53.82, H 7.74, N 8.97; found: C 53.91, H 7.65, N 8.89%. 6: IR
CHCl ): 3031w, 2952m, 2932m, 2858m, 1779s, 1472w, 1464w, 1438w,
373m, 1251m, 1167m, 1136s, 1090s, 1018m, 973w, 866s, 839s. H NMR
300 MHz, CDCl ): 5.01 (dd, J = 5.3, 1.0, H–C(2)); 4.41 (td, J ≈ 5.4, 1.0,
H–C(3)); 3.94 (d, J = 5.6, H–C(4)); 3.74 (t, J = 1.0, H–C(5)); 2.15 (s,
CDCl
3
5
2
3
2
13
C NMR (75 MHz, CDCl
3
2
2
3
1
(
(
1
(
3
C); 24.3, 24.7 (2q, Me
2
24 2 4
H N O
3
1
3
13
OAc); 1.49, 1.36 (2s, Me
MHz, CDCl ): 169.4 (s, CNO); 113.7 (s, Me
C(3)); 78.0 (d, C(2)); 69.6 (d, C(4)); 64.2 (d, C(5)); 26.9, 26.1 (2q of Me
q of Me C); 21.2 (q, OAc); 18.8 (s, Me C); 24.3, 24.9 (2q, Me Si). ESI-
MS: 345 ([M + H] ); 362 ([M + H
Anal. calc. for C16 Si (344.48): C 55.79, H 8.19; found: C 55.82, H
.21%. 7: H NMR (300 Hz, CDCl ): 4.44, 4.41 (2t, J ≈ 5.8, H–C(2), H–
C(3)); 3.88 (td, J = 8.7, 2.2, H–C(5)); 3.60 (dd, J ≈ 9.0, 5.0, H–C(4)); 3.59
td, J = 10.0, 5.6, H–C(1)); 2.63 (d, J = 9.7, exchanged with D O, HO–
C(1)); 2.46 (br.d, J = 2.2, exchanged with D O, HO–C(5)); 1.48, 1.32 (2s,
Me C); 0.92 (s, Me C); 0.14, 0.10 (2s, Me
Si). 1 C NMR (75 Hz, CDCl
11.4 (s, Me C); 79.5 (d, C(5)); 77.6, 75.4 (2d, C(2) and C(3)); 74.4 (d,
C(4)); 73.2 (d, C(1)); 25.9 (3q of Me C, 2q of Me C); 24.3 (2q of Me C);
8.4 (s, Me C); 24.55, 24.50 (2q, Me Si). HI-MALDI-MS: 327.1595 (7.3,
SiNa, [M + Na] , calc. 327.1604). For 5, strong IR-bands at 2102
2
C); 0.92 (s, Me
3
C); 0.12 (s, Me
C); 86.8 (s, C(1)); 81.4 (d,
C,
2
Si). C NMR (75
3
2
2
3
3
3
2
+
+
+
+
2
O] ); 367 ([M + Na] ); 383 ([M + K] ).
28 6
H O
1
8
3
(
2
2
3
2
3
2
3
):
1
2
3
2
2
1
3
2
+
14 28 5
C H O
21
13
and 1679 cm and a C singlet at 190.8 ppm evidence the diazo and the
carbonyl groups. For 6, a strong IR band at 1779 cm , a H singlet at 2.15
21
1
13
ppm, and a C singlet at 169.4 ppm evidence the acetoxy group. A dd at
.01 ppm (J = 5.3, 1.0) and the td at 4.41 ppm (J ≈ 5.4, 1.0) were assigned
to H–C(2) and H–C(3), respectively; a d (J = 5.6) resonating at higher fields
3.94 ppm) was assigned to H–C(4), geminal to the silyloxy group. A t at
.74 ppm (J = 1.0) was assigned to H–C(5). A NOE (6.6%) between the dd
5
7 (a) R. Bisaz, Ph.D, ETH-Zürich, 1975; (b) H. Kold, I. Lundt and C.
Pedersen, Acta Chem. Scand., 1994, 48, 675.
(
3
8 G. Hu and A. Vasella, Helv. Chim. Acta, 2002, 85, 4369.
9 (a) R. S. Atkinson and B. J. Kelly, J. Chem. Soc., Chem. Commun.,
1987, 1362; (b) R. S. Atkinson and B. J. Kelly, J. Chem. Soc., Chem.
Commun., 1989, 836; (c) R. S. Atkinson, M. J. Grimshire and B. J.
Kelly, Tetrahedron, 1989, 45, 1362.
10 (a) D. C. Iffland, L. Salisbury and Wm. R. Schafer, J. Am. Chem. Soc.,
1961, 83, 747; (b) R. W. Hoffmann and H. J. Luthardt, Tetrahedron
Lett., 1966, 411; (c) W. A. F. Gladstone and R. O. C. Norman, J. Chem.
Soc. (C), 1966, 1531; (d) R. W. Hoffmann and H. J. Luthardt, Chem.
Ber., 1968, 101, 3851; (e) R. W. Hoffmann and H. J. Luthardt, Chem.
Ber., 1968, 101, 3861; (f) A. Stojiljkovic, N. Orbovic, S. Sredojevic and
M. Lj. Mihailovic, Tetrahedron, 1970, 26, 1101.
at 5.01 ppm (H–C(2)) and the td at 4.41 ppm (H–C(3)) and a NOE (5.7%)
between the td at 4.41 ppm (H–C(3)) and the d at 3.94 ppm (H–C(4))
evidence that (H–C(2)), (H–C(3)), and (H–C(4)) are cis to each other while
a weak NOE of 2.8% between the d at 3.94 ppm (H–C(4)) and the t at 3.74
ppm (H–C(5)) evidences that (H–C(5)) is trans to (H–C(4)).
‡
Crystal data for 9: C28
36 7
H O Si, M = 512.66, monoclinic, a = 6.3780(10),
3
b = 19.449(5), c = 11.752(3) Å, V = 1420.4(6) Å , T = 293(2) K, space
1 a
, Z = 2, m(Cu-K
) = 1.076 mm2 , 2627 reflections measured,
1
group P2
283 unique (Rint = 0.027). Flack = 20.10(7). R1 = 0.0509. The final
2
2
CHEM. COMMUN., 2003, 952–953
953