www.eurjic.org
FULL PAPER
Avance 300 spectrometer with commercial double resonance 2.5
and 4 mm MAS NMR probes operating at a resonance frequency
of 121.5 MHz and a MAS frequency of 14 kHz. The phosphorus
Isaeva, M. Ruck, Z. Anorg. Allg. Chem. 2015, 641, 279–284;
m) M. F. Groh, J. Breternitz, E. Ahmed, A. Isaeva, A. Efimova,
P. Schmidt, M. Ruck, Z. Anorg. Allg. Chem. 2015, 641, 388–
3
93; n) T. Alammar, Y.-K. Chow, A.-V. Mudring, New J. Chem.
3 4
chemical shifts were referenced relative to H PO .
2015, 39, 1339–1347; o) K.-O. Feldmann, T. Wiegand, J. Ren,
H. Eckert, J. Breternitz, M. F. Groh, U. Müller, M. Ruck, B.
Maryasin, C. Ochsenfeld, O. Schön, K. Karaghiosoff, J. J. Wei-
gand, Chem. Eur. J. 2015, DOI: 10.1002/chem.201406476.
3] a) A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Bait-
inger, Y. Grin, Nature 2006, 443, 320–323; b) E. Ahmed, J.
Beck, J. Daniels, Th. Doert, S. J. Eck, A. Heerwig, A. Isaeva,
S. Lidin, M. Ruck, W. Schnelle, A. Stankowski, Angew. Chem.
Int. Ed. 2012, 51, 8106–8109; Angew. Chem. 2012, 124, 8230–
8233.
SEM/STEM: Scanning (transmission) electron microscopy was
performed by using a SU8020 (Hitachi) with a triple detector sys-
tem for secondary and low-energy backscattered electrons (U
0–30 kV). Energy-dispersive X-ray (EDX) spectra were collected
= 8–30 kV) using a Silicon Drift Detector (SDD) X-MaxN (Ox-
a
=
[
1
(U
a
ford). Prior to the measurements, the samples were washed with
dry DCM and subsequently with EtOH (96%), and in each wash-
ing step centrifuged and redispersed using a supersonic bath. Fi-
nally, the dispersed particles were transferred either on a TEM grid
or a polished silicon wafer.
[4] R. L. Carroll, R. P. Carter, Inorg. Chem. 1967, 6, 401–403.
[
5] a) J. S. Lannin, B. V. Shanabrook, F. Gompf, J. Non-Cryst. Sol-
ids 1982, 49, 209–219; b) G. Fasol, M. Cardona, W. Hönle,
H. G. von Schnering, Solid State Commun. 1984, 52, 307–310;
c) D. J. Olego, J. A. Baumann, M. A. Kuck, R. Schachter, C. G.
Michel, Solid State Commun. 1984, 52, 311–314; d) H. Farman,
D. Blakey, J. C. Dore, M.-C. Bellissent-Funel, S. R. Elliott,
Phys. Scr. 1994, 49, 634–636; e) P. Jovari, L. Pusztai, Appl.
Phys. A 2002, 74, S1092–S1094.
XRD: Data collection was performed at 296(1) K on an XЈPert Pro
MPD diffractometer (PANalytical) equipped with
Ge(111) monochromator by using Cu-Kα1 radiation (λ
54.056 pm). The air-sensitive samples were protected by a
a curved
=
1
polyimide (Kapton®) film (Chemplex).
[
6] a) A. Bytchkov, F. Fayon, D. Massiot, L. Hennet, D. L. Price,
Phys. Chem. Chem. Phys. 2010, 12, 1535–1542; b) T. Rami-
reddy, T. Xing, M. M. Rahman, Y. Chen, Q. Dutercq, D. Gun-
zelmann, A. M. Glushenkov, J. Mater. Chem. A 2015, 3, 5572–
5584.
Acknowledgments
We gratefully acknowledge J. Pallmann (TU Dresden) for her help
with the MAS NMR measurements. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG).
[7] S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. 2007, 46, 4028–
4035.
[
8] T. Wiegand, H. Eckert, S. Grimme, D. Hoppe, M. Ruck, Chem.
Eur. J. 2011, 17, 8739–8748.
[9] M. Di Vaira, M. Peruzzini, S. S. Constantini, P. Stoppioni, J.
Organomet. Chem. 2006, 691, 3931–3937.
[10] M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, G. Seifert,
Angew. Chem. Int. Ed. 2005, 44, 7616–7619; Angew. Chem.
2005, 117, 7788–7792.
[11] A. Pfitzner, M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert,
Angew. Chem. Int. Ed. 2004, 43, 4228–4231; Angew. Chem.
2004, 116, 4324–4327.
[
[
1] Ionic Liquids in Synthesis (Eds.: P. Wasserscheid, T. Welton),
nd ed., Wiley-VCH, Weinheim 2007.
2
2] a) M. Groh, U. Müller, E. Ahmed, A. Rothenberger, M. Ruck,
Z. Naturforsch., B: J. Chem. Sci. 2013, 68, 1108–1122; b) A.
Taubert, Z. Li, Dalton Trans. 2007, 723–727; c) K. Biswas, Q.
Zhang, I. Chung, J.-H. Song, J. Androulakis, A. J. Freeman,
M. G. Kanatzidis, J. Am. Chem. Soc. 2010, 132, 14760–14762;
d) D. Freudenmann, S. Wolf, M. Wolff, C. Feldmann, Angew.
Chem. Int. Ed. 2011, 50, 11050–11060; Angew. Chem. 2011, [12] C. Aubauer, G. Engelhardt, T. M. Klapötke, A. Schulz, J.
1
23, 11244–11255; e) C. Vollmer, C. Janiak, Coord. Chem. Rev.
Chem. Soc., Dalton Trans. 1999, 1729–1734.
[13] I. Krossing, J. Chem. Soc., Dalton Trans. 2002, 500–512.
[14] K. B. Dillon, M. G. Craveirinha Dillon, T. C. Waddington, J.
Inorg. Nucl. Chem. 1976, 38, 1149–1150.
2
011, 255, 2039–2057; f) M. Wolff, J. Meyer, C. Feldmann, An-
gew. Chem. Int. Ed. 2011, 50, 4970–4973; Angew. Chem. 2011,
1
23, 5073–5077; g) E. Ahmed, J. Breternitz, M. F. Groh, M.
Ruck, CrystEngComm 2012, 14, 4874–4885; h) M. F. Groh, A.
Isaeva, M. Ruck, Chem. Eur. J. 2012, 18, 10886–10891; i) K.
Schütte, H. Meyer, C. Gemel, J. Barthel, R. A. Fischer, C. Jan-
iak, Nanoscale 2014, 6, 3116–3126; j) S. Tyrrell, M. Swadzba-
Kwasny, P. Nockemann, J. Mater. Chem. A 2014, 2, 2616–2622;
k) G. Gebresilassie Eshetu, M. Armand, B. Scrosati, S. Pass-
erini, Angew. Chem. Int. Ed. 2014, 53, 13342–13359; Angew.
Chem. 2014, 126, 13558–13576; l) M. F. Groh, M. Knies, A.
[15] M. Kaupp, C. Aubauer, G. Engelhardt, T. M. Klapötke, O. L.
Malkina, J. Chem. Phys. 1999, 110, 3897–3902.
[16] M. Baudler, P. Junkes, G. Sadri, Z. Naturforsch., B: J. Chem.
Sci. 1971, 26, 759–762.
[17] G. Brauer, Handbuch der Präparativen Anorganischen Chemie,
3rd ed., vol. 1, F. Enke, Stuttgart 1962, p. 506.
Received: May 8, 2015
Published Online: June 3, 2015
Eur. J. Inorg. Chem. 2015, 3991–3994
3994
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim