334
T. Piehler – A. Lu¨tzen · Diastereoselective Self-assembly of Dinuclear Complexes
6.88 (m, 1 H, 7-H), 6.90 (s, 1 H, 20-H), 7.03 (d, J = 7,7 Hz, 298.0 K, 500.1 MHz): δ = 5.85 (s, 1 H, 1ꢀ-H), 5.98 (s, 1 H,
1 H, 3-H), 7.22 (m, 1 H, 6-H), 7.23 (d, J = 7.7 Hz, 1 H, 4-H), 1-H), 6.06 (d, J = 7.7 Hz, 1 H, 8ꢀ-H), 6.30 (d, J = 7.5 Hz,
7.29 (d, J = 7.7 Hz, 1 H, 17ꢀ-H), 7.37 (d, J = 8.2 Hz, 1 H, 1 H, 8-H), 6.40 (dd, J = 7.0 Hz, J = 7.7 Hz, 2 H, 7ꢀ-H), 6.62
4ꢀ-H), 7.50 (d, J = 7.7 Hz, 1 H, 5ꢀ-H), 7.59 (m, 1 H, 24ꢀ-H), (s, 1 H, 20-H), 6.65 (m, 1 H, 24-H), 6.70 (d, J = 7.9 Hz, 1 H,
7.62 (d, J = 7.7 Hz, 1 H, 5-H), 7.82 (s, 1 H, 25-H), 7.98 (d, 3ꢀ-H), 6.71 (m, 1 H, 6ꢀ-H), 6.91 (m, 1 H, 7-H), 6.93 (d, J =
J = 8.2 Hz, 1 H, 17-H), 8.06 (d, J = 7.7 Hz, 1 H, 18ꢀ-H), 8.13 8.2 Hz, 1 H, 3-H), 7.22 (dd, J = 7.7 Hz, J = 7.7 Hz, 2 H,
(m, 1 H, 23-H), 8.13 (s, 1 H, 20ꢀ-H), 8.17 (m, 1 H, 23ꢀ-H), 6-H), 7.33 (d, J = 8.2 Hz, 1 H, 4-H), 7.56 (dd, J = 8.4 Hz,
8.32 (d, J = 7.7 Hz, 1 H, 22ꢀ-H), 8.41 (d, J = 8.2 Hz, 1 H, J = 1.7 Hz, 17ꢀ-H), 7.42 (d, J = 8.2 Hz, 1 H, 4ꢀ-H), 7.51 (d,
18-H), 8.47 (d, J = 8.2 Hz, 1 H, 22-H), 8.72 (d, J = 4.4 Hz, 1 J = 8.0 Hz, 1 H, 5ꢀ-H), 7.53 (m, 1 H, 24ꢀ-H), 7.67 (d, J =
H. 25ꢀ-H).
7.7 Hz, 1 H, 5-H), 7.74 (d, J = 4.8 Hz, 1 H, 25-H), 7.86 (dd,
J = 8.6 Hz, J = 1.7 Hz, 1 H, 17-H), 7.93 (s, 1 H, 20ꢀ-H), 8.04
(m, 1 H, 23-H), 8.08 (m, 1 H, 23ꢀ-H), 8.10 (d, J = 8.4 Hz,
(∆,Λ)-[Cu {(R)-1}2](BF ) /(∆,Λ)-[Cu {(S)-1}2](BF )
4 2
2
4 2
2
3
1 H, 18ꢀ-H), 8.31 (d, J = 8.4 Hz, 1 H, 22ꢀ-H), 8.42 (d, J =
6.00 mg (8.92 mmol) of (R)-1 was dissolved in 0.6 mL
of CD2Cl2. 2.81 mg (8.92 mmol) of [Cu(CH3CN)4](BF4)
was dissolved in 0.2 mL CD3CN. The two solutions were
combined and mixed. The resulting light-yellow solution was
transferred into an NMR tube. Likewise, solutions for mea-
surement of ESI and CD spectra were generated. For ESI-MS
and CD studies a 5 × 10−5 mol L−1 solution was prepared
(CH2Cl2/CH3CN 1 : 1). The complexes of (S)-1 were pre-
pared and characterized likewise.
8.6 Hz, 1 H, 18-H), 8.46 (m, J = 8.3 Hz, 2 H, 22-H), 8.48 (d,
J = 5.0 Hz, 1 H, 25ꢀ-H). – 13C NMR (CD2Cl2/CD3CN 2 : 1,
298.0 K, 125.8 MHz): δ = 64.5, 84.8, 85.0, 95.3, 95.9, 119.0
(2 C), 119.1, 120.1 (2C), 120.3, 120.5, 121.1, 121.6, 121.9,
122.4, 122.8, 123.5 (3 C), 125.4 (2 C), 125.7, 126.7, 127.6,
128.1, 128.4, 131.1, 131.3, 138.2, 138.4, 139.1, 140,4, 140.6,
141.5, 142.6, 146.4, 147.5, 147.6 (2 C), 147.7, 147.8, 148.3,
148.4, 148.9, 149.3, 149.8, 151.1, 151.3.
CD (λ (∆ε)): (∆Λ,R) = 297 (−5.2), 364 (11.7);
(∆,Λ,S) = 297 (5.2), 364 (−11.6). – MS ((+)-ESI, pos.,
CD2Cl2/CD3CN): m/z = 735.2 ([Cu212]2+, [Cu1]+), 1559.4
Acknowledgement
We are grateful to the Deutsche Forschungsgemeinschaft
(SFB 624) for financial support.
+
({[Cu212](BF4)} ). – 1H NMR (CD2Cl2/CD3CN 2 : 1,
[1] Some general reviews: a) J. S. Lindsey, New J. Chem.
1991, 15, 153; b) D. S. Lawrence, T. Jiang, M. Levett,
Chem. Rev. 1995, 95, 2229; c) M. C. T. Fyfe, J. F. Stod-
dart, Acc. Chem. Res. 1997, 30, 393; d) L. M. Greig,
D. Philp, Chem. Soc. Rev. 2001, 30, 287.
[2] Self-assembly by hydrogen bonding: a) F. Hof, S. L.
Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem. 2002,
114, 1556; Angew. Chem. Int. Ed. 2002, 41, 1488;
b) J. Rebek, Jr., J. Org. Chem. 2004, 69, 2651; c) L. C.
Palmer, J. Rebek, Jr., Org. Biomol. Chem. 2004, 2,
3051; d) J. Rebek, Jr., Angew. Chem. 2005, 117, 2104;
Angew. Chem. Int. Ed. 2005, 44, 2068; e) A. Scarso,
J. Rebek, Jr., Top. Curr. Chem. 2006, 265, 1; f) J. Re-
bek, Jr., Chem. Commun. 2007, 2777.
[3] Self-assembly by metal coordination: a) S. Leininger,
B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853;
b) G. F. Swiegers, T. J. Malefetse, Chem. Rev. 2000,
100, 3483; c) B. J. Holliday, C. A. Mirkin, Angew.
Chem. 2001, 113, 2076; Angew. Chem. Int. Ed. 2001,
40, 2022; d) S. R. Seidel, P. J. Stang, Acc. Chem. Res.
2002, 35, 972; e) F. Wu¨rthner, C.-C. You, C. R. Saha-
Mo¨ller, Chem. Soc. Rev. 2004, 33, 133; f) R. M. Yeh,
A. V. Davis, K. N. Raymond, in Comprehensive Coor-
dination Chemistry II, (Ed.: T. J. Meyer), Elsevier, Ox-
ford, 2004, p. 327; g) M. Schmittel, V. Kalsani, Top.
Curr. Chem. 2005, 245, 1; h) D. Fiedler, D. H. Leung,
R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005,
38, 349; i) M. Fujita, M. Tominaga, A. Hori, B. Ther-
rien, Acc. Chem. Res. 2005, 38, 369; j) N. C. Sian-
neschi, M. S. Masar III., C. A. Mirkin, Acc. Chem. Res.
2005, 38, 825; k) C. H. M. Arrijs, G. P. M. van Klink,
G. van Koten, J. Chem. Soc., Dalton Trans. 2006, 308;
l) V. Maurizot, M. Yoshizawa, M. Kawano, M. Fujita,
J. Chem. Soc., Dalton Trans. 2006, 2750; m) M. Tomi-
naga, M. Fujita, Bull. Chem. Soc. Jpn. 2007, 80, 1473;
n) C.-L. Chen, J.-Y. Zhang, C.-Y. Su, Eur. J. Inorg.
Chem. 2007, 2997; o) D. J. Tranchemontagne, Z. Ni,
M. O’Keeffe, O. M. Yaghi, Angew. Chem. 2008, 120,
5214; Angew. Chem. Int. Ed. 2008, 47, 5136; p) R. W.
Saalfrank, H. Maid, A. Scheurer, Angew. Chem. 2008,
120, 8924; Angew. Chem. Int. Ed. 2008, 47, 8794;
q) M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew.
Chem. 2009, 121, 3470; Angew. Chem. Int. Ed. 2009,
48, 3418.
[4] Some recent reviews about stereoselective self-
assembly: a) M. S. Spector, J. V. Selinger, J. M.
Schnur, Top. Stereochem. 2003, 24, 281; b) T. D.
Hamilton, L. R. MacGillivray, Cryst. Growth Design
2004, 4, 419; c) M. A. Mateos-Timoneda, M. Crego-
Calama, D. N. Reinhoudt, Chem. Soc. Rev. 2004, 33,
Unauthenticated
Download Date | 6/30/17 11:54 AM