10.1002/anie.201811331
Angewandte Chemie International Edition
COMMUNICATION
[1]
P. Munnik, P. E de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687–
6718.
The deliberate addition of one equivalent of H2O to 15 leads to
the near quantitative formation of 16 (85% spectroscopic yield).
Using the structure of 16 (minus H2O) as a reasonable starting
point, we optimized the geometry of 15Tip at the B3LYP/def2-
TZVP level of theory. The resulting R6Si8 cluster is related to the
Si7 species 13 inasmuch as one of the SiR2 moieties is formally
replaced by an exohedral unsaturated Si=Si bridge (Si6 and Si7).
The calculated HOMO and LUMO of 15 are predominantly
constituted by the and * components at this Si=Si moiety,
which readily explains the selective H2O addition across this
bond (Figure 4). The experimental 29Si NMR signals of 15 at =
111.8 (Si6) and 60.3 ppm (Si7) can be assigned to the
exohedral Si=Si unit on the basis of their similarity to those
reported for 1,2-disilyl-1,2-diaryl disilenes with chemical shifts
between 85 and 130 ppm.[30] Unsymmetrical substitution is well-
known to lead to polarized Si=Si bonds with sometimes
extremely differing chemical shifts for the tricoordinate Si
atoms.[31] All calculated 29Si chemical shifts of 15Tip (obtained
with the OLYP functional) show a convincing agreement with the
experimental data. Those of the exohedral Si=Si moiety at =
115.5 (Si6) and 80.2 ppm (Si7) are (as usually for atoms with
[2]
[3]
C. Hollenstein, Plasma Phys. Control. Fusion 2000, 42, R93–R104.
N. T. K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 2014, 114,
7610–7630.
[4]
[5]
J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H.-W. Lerner, M. C.
Holthausen, M. Wagner, Angew. Chem. Int. Ed. 2015, 54, 5429–5433;
Angew. Chem. 2015, 127, 5519–5523.
Y. Wang, Y. Zhang, F. Wang, D. E. Giblin, J. Hoy, H. W. Rohrs, R. A.
Loomis, W. E. Buhro, Chem. Mater. 2014, 26, 2233–2243.
A. Ecker, E. Weckert, H. Schnöckel, Nature 1997, 387, 379–381.
a) P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D.
Kornberg, Science 2007, 318, 430–433; b) R. Rongchao, C. Zeng, M.
Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346–10413.
Y. Heider, D. Scheschkewitz, Dalton Trans. 2018, 47, 7104–7112.
A. S. Ivanov, A. I. Boldyrev, J. Phys. Chem. A 2012, 116, 9591–9598.
[6]
[7]
[8]
[9]
[10] a) D. Scheschkewitz, Angew. Chem. Int. Ed. 2005, 44, 2954–2956;
Angew. Chem. 2005, 117, 3014–3016; b) D. Nied, R. Köppe, W.
Klopper, H. Schnöckel, F. Breher, J. Am. Chem. Soc. 2010, 132,
10264–10265; c) K. Abersfelder, A. J. P. White, H. S. Rzepa, D.
Scheschkewitz, Science 2010, 327, 564–566; d) K. Abersfelder, A. J. P.
White, R. J. F. Berger, H. S. Rzepa, D. Scheschkewitz, Angew. Chem.
Int. Ed. 2011, 50, 7936–7939; Angew. Chem. 2011, 123, 8082–8086.
[11] T. C. Dinadayalane, U. D. Priyakumar, G. N. Sastry, J. Phys. Chem. A
2004, 108, 11433–11448.
bonding including
a
pronounced -component) slightly
overestimated, but otherwise nicely reproduce this trend (Table
1). Indeed, the calculated structure of 15Tip confirms appreciable
pyramidalization at the relatively upfield shifted silicon atom Si7
with a sum of bond angles of = 333.4°, while the downfield
silicon atom Si6 is much closer to planarity ( = 358.1°).
Consistent with the electrophilic nature of Si6 in 15, the OH
group is attached to the corresponding atom of the hydrolysis
product 16.
In conclusion, with the systematic transformation of the
anionic Si6 siliconoid 12 (R = Tip) to species with seven and
even eight vertices 13, 14 and 15, we provide proof-of-concept
for the stepwise and repeated expansion of clusters with atomic
precision. The key is the use of decamethylsilicocene as an
[12] a) S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, T. F. Fässler, Angew.
Chem. Int. Ed. 2011, 50, 3630–3670; Angew. Chem. 2011, 123, 3712–
3754; b) S. C. Sevov, J. M. Goicoechea, Organometallics 2006, 25,
5678–5692; c) F. Li, A. Muňoz-Castro, S. C. Sevov, Angew. Chem. Int.
Ed. 2012, 51, 8581–8584; Angew. Chem. 2012, 124, 8709–8712; d) F.
Li, S. C.Sevov, J. Am. Chem. Soc. 2014, 136, 12056–12063; e) F. S.
Geitner, J. V. Dums, T. F. Fässler, J. Am. Chem. Soc. 2017, 139,
11933–11940; f) F. S. Geitner, W. Klein, T. F. Fässler, Angew. Chem.
Int. Ed. DOI: 10.1002/anie.201803476; Angew. Chem. DOI:
10.1002/ange.201803476; g) S. Frischhut, W. Klein, M. Drees, T. F.
Fässler, Chem. Eur. J. 2018, 24, 9009–9014; h) O. Kysliak, C. Schrenk,
A. Schnepf, Inorg. Chem. 2015, 54, 7083–7088; i) O. Kysliak, A.
Schnepf, Dalton Trans. 2016, 45, 2404–2408.
[13] a) S. Joseph, M. Hamberger, F. Mutzbauer, O. Härtl, M. Meier, N.
Korber, Angew. Chem. Int. Ed. 2009, 48, 8770–8772; Angew. Chem.
2009, 121, 8926–8929; b) M. Waibel, F. Kraus, S. Scharfe, B. Wahl, T.
F. Fässler, Angew. Chem. Int. Ed. 2010, 49, 6611–6615; Angew. Chem.
2010, 122, 6761–6765.
electrophilic
source
of
divalent
silicon
with
pentamethylcyclopentadienide ligands (Cp*) as anionic leaving
groups. As our protocol allows for the regeneration of the anionic
functionality after the expansion step, a rapid increase of
available siliconoids (including heteroatom-doped variations) can
be expected. The ubiquitous use of Cp* throughout the Periodic
Table may allow for application well beyond the realm of silicon
clusters.
[14] a) T. Henneberger, W. Klein, T. F. Fässler, Z. Anorg. Allg. Chem. DOI
10.1002/zaac.201800227; b) C. Lorenz, F. Hastreiter, J. Hioe, N.
Lokesh, S. Gärtner, N. Korber, R. M. Gschwind, Angew. Chem. Int. Ed.
DOI
10.1002/anie.201807080;
Angew.
Chem.
DOI:
10.1002/ange.201807080
[15] a) A. Sekiguchi, T. Yatabe,C. Kabuto, H. Sakurai, J. Am. Chem. Soc.
1993, 115, 5853–5854; b) K. Abersfelder, A. Russell, H. S. Rzepa, A. J.
P. White, P. R. Haycock, D. Scheschkewitz, J. Am. Chem. Soc. 2012,
134, 16008–16016.
Acknowledgements
[16] a) N. Wiberg, C. M. M. Finger, K. Polborn, Angew. Chem. Int. Ed. Engl.
1993, 32, 1054–1056; Angew. Chem. 1993, 105, 1140–1142; b) M.
Ichinohe, M. Toyoshima, R. Kinjo, A. Sekiguchi, J. Am. Chem. Soc.
2003, 125, 13328–13329; c) T. M. Klapötke, S. K. Vasisht, G. Fischer,
P. Mayer, J. Organomet. Chem. 2010, 695, 667–672.
This work was supported by Deutsche Forschungsgemeinschaft
(DFG SCHE906/4-1 and 4-2) and COST (Action CM1302). We
thank Susanne Harling for elemental analysis and the reviewers
whose comments contributed significantly to the improvement of
the computational results. J.S. acknowledges the generous
provision of computational resources by the Paderborn Center
for Parallel Computing (PC2)
[17] N. Wiberg, S.-K. Vasisht, G. Fischer, P. Mayer, V. Huch, M. Veith, Z.
Anorg. Allg. Chem. 2007, 633, 2425–2430.
[18] G. Fischer, V. Huch, P. Mayer, S. K. Vasisht, M. Veith, N. Wiberg,
Angew. Chem. Int. Ed. 2005, 44, 7884–7887; Angew. Chem. 2005, 117,
8096–8099.
[19] T.Iwamoto, N. Akasaka, S. Ishida, Nat. Commun. 2014, 5, 5353.
[20] a) A. Tsurusaki, C. Iizuka, K. Otsuka, S. Kyushin, J. Am. Chem. Soc.
2013, 135, 16340–16343; b) S. Ishida, K. Otsuka, Y. Toma, S. Kyushin,
Keywords: anions • cluster compounds • main group elements •
silicon • subvalent compounds
4
This article is protected by copyright. All rights reserved.