Chemical Papers
(t, J = 7.8 Hz, 1H, H-6), 6.462 (d, J = 2.3 Hz, 1H, H-2),
3.904 (s, 3H, OMe′), 3.821 (s, 3H, OMe″); 13C NMR
(DMSO-d6, 150 MHz) δ: 160.66 (C=O), 150.67 (=CH),
149.78 (C-3″), 149.54 (C-3′), 146.10 (C-8a), 144.49 (C-4″),
142.74 (C-4′), 137.10 (C-5″), 136.35 (C-5′), 134.24 (C-7),
130.25 (C-1′), 128.13 (C-5), 125.02 (C-1″), 118.23 (C-6),
116.26 (C-6″), 114.87 (C-8), 114.57 (C-6′, C-2′), 113.84
(C-4a), 112.54 (C-2″), 71.56 (C-2), 56.59 (OMe′), 56.52
(OMe″).
130.93 (C-1′), 127.88 (C-5), 125.81 (C-1″), 122.11 (C-2″),
118.98 (C-6), 117.57 (C-2′), 115.40 (C-3″) 114.88 (C-3′),
114.61 (C-8), 111.07 C-6′), 109.67, C-6″), 72.11 (C-2),
55.56 (OCH3″), 55.52 (OCH3′).
3‑((3,4‑dihydroxybenzylidene)amino)‑2‑(3,4‑dihydr
oxyphenyl)‑2,3‑dihydroquinazolin‑4(1H)‑one (7)
Of white solid; yield 65.8%; m.p. 201–203 °C; Rf 0.57 (sol-
vent B); FT-IR (ATR, diamond): νmax: 3421 (O–H), 3291
(N–H), 3067 (C–H)Ar, 1608 (C=O), 1514 (HC=N), 1281
(N–N), 1143 (C–N), 1115 (C–O) cm−1; UV–Vis (DMSO):
λmax 302, 338 nm; HRMS for C21H17N3O5Na: calcd
[M + Na]+ 414.3666; found 414.3662; 1H NMR (DMSO-
d6, 600 MHz) δ: 9.280 (s, 2H, O–H(4)’, O–H(4)”), 8.890 (s,
2H, O–H(3)’, O–H(3)”), 8.530 (s, 1H, N=C–H), 7.686 (m,
1H, H-5), 7.682 (m, 1H, H-2′) 7.602 (s, N–H), 7.262 (dd,
J = 8.0 Hz, J = 7.3 Hz, 1H, H-7), 7.192 (s, 1H, H-2″), 6.926
(d, J = 8.1 Hz, 1H, H-6″), 6.763 (m, H, H-8), 6.760 (m, 1H,
H-5′’), 6.707 (t, 1H, J = 8.0 Hz, J = 7.1 Hz, H-6), 6.640 (m,
2H, H-5′, H-6′), 6.214 (s, 1H, H-2); 13C NMR (DMSO-d6,
150 MHz) δ: 160.37 (C=O), 152.34 (=CH), 148.24 (C-3″),
146.06 (C-8a), 145.59 (C-3′), 145.30 (C-4′), 144.97 (C-4″),
133.56 (C-7), 131.49 (C-2′), 131.15 (C-1′), 127.89 (C-5),
125.84 (C-1″), 121.03 (C-6″), 117.44 (C-6), 117.35 (C-5′),
115.33 (C-8), 114.84 (C-4a), 113.77 (C-5″), 112.86 (C-2″),
71.51 (C-2).
3‑((4‑hydroxy‑3,5‑dimethoxybenzylidene)amino)
‑2‑(4‑hydroxy‑3,5‑dimethoxyphenyl)‑2,3‑dihydro‑
quinazolin‑4(1H)‑one (5)
Light yellow solid; yield 66.9%; m.p. 175–176 °C; Rf 0.69
(solvent B); FT-IR (ATR, diamond): νmax: 3507 (O–H), 3380
(N–H), 3117 (C–H)Ar, 1641 (C=O), 1609 (HC=N), 1250
(N–N), 1151 (C–N), 1111 (C–O), 1042 (O–CH3) cm−1
;
UV–Vis (DMSO): λmax 335 nm; HRMS for C25H251N3O7Na:
calcd [M + Na]+ 502.4717; found 502.4726; H NMR
(DMSO-d6, 600 MHz) δ: 8.714 (s, 1H, N=C−H), 7.968 (dd,
J = 8.2 Hz, J = 7.1 Hz, 1H, H-7), 7.712 (d, J = 7.8 Hz, 1H,
H-5), 7.659 (s, 1H, N–H), 6.923 (s, 2H, H-2″ H-6″), 6.816
(d, J = 8.2 Hz, 1H, H-8), 6.745 (dd, J = 7.8 Hz, J = 7.1 Hz,
1H, H-6), 6.704 (s, 2H, H-2′, H-6′), 6.287 (s, 1H, H-2);
13C NMR (DMSO-d6, 150 MHz) δ: 160.64 (C=O), 152.76
(=CH), 148.02 (C-3″, C-5″), 147.66 (C-3′, C-5′), 146.45
(C-8a), 138.23 (C-4″), 135.72 (C-4′), 133.69 (C-7), 130.05
(C-1′), 127.86 (C-5), 124.61 (C-1″), 117.67 (C-6), 114.89
(C-4a), 114.61 (C-8), 104.90 (C-2″, C-6″), 104.61 (C-2′,
C-6′), 72.64 (C-2).
Results and discussion
Chemistry
3‑((4‑hydroxy‑3‑methoxybenzylidene)amino)‑2‑(4
‑hydroxy‑3‑methoxyphenyl)‑2,3‑dihydroquinazo‑
lin‑4(1H)‑one (6)
The frst part of our work was aimed at the synthesis of
Schif’s bases derived from the quinazolinone heterocyclic
skeleton. We have focused on the development of a method
that is simple, fast, and offers high yields of products.
Schif’s bases are formed by condensation of the primary
amines and structurally diverse aldehydes. The direct con-
densation reaction occurs at high temperatures and this ther-
mal approach is very practical in many cases (Fülöp et al.
1992; Gawad et al. 2010). We decided to build on our pre-
(Hricovíniová 2016) on the synthesis of a homologous series
Of white solid; yield 74.9%; m.p. 190–192 °C; Rf 0.75
(solvent B); FT-IR (ATR, diamond): νmax: 3497 (O–H),
3281 (C–H)Ar, 3083 (N–H), 1662 (C=O), 1543 (HC=N),
1262 (N–N), 1143 (C–N), 1101 (C–O), 1383 (NO2), 1059
(O–CH3) cm−1; UV–Vis (DMSO): λmax 332 nm; HRMS
for C23H21N3O5Na: calcd [M + Na]+ 442.4197; found
442.4192; 1H NMR (DMSO-d6, 600 MHz) δ: 9.552 (s, 1H,
O–H″), 9.033 (s, 1H, O–H′), 8.683 (s, 1H, N=C–H), 7.698
(d, J = 7.7 Hz, 1H, H-5), 7.652 (d, J = 2.2 Hz, 1H, N–H),
7.284 (dd, J = 8.1 Hz, J = 7.3 Hz, 1H, H-7), 7.265 (s, 1H,
H-6″), 7.105 (d, J = 8.1 Hz, 1H, H-2″), 7.056 (s, 1H, H-6′),
6.818 (d, J = 8.1 Hz, 1H, H-3″), 6.788 (d, J = 8.1 Hz, 1H,
H-8), 6.735 (m, 2H, H-2′, H-6), 6.672 (d, J = 8.2 Hz, 1H,
H-3′), 6.287 (d, J = 2.2 Hz 1H, H-2), 3.783 (s, 3H, OCH3″),
3.701 (s, 3H, OCH3′); 13C NMR (DMSO-d6, 150 MHz) δ:
160.57 (C=O), 153.12 (=CH), 149.25 (C-5″), 147.87 (C-4″),
147.42 (C-4′), 146.59 (C-5′), 146.31 (C-8a), 133.65 (C-7),
Adjacent amino and hydrazino functional groups in het-
erocyclic compounds provide opportunities for construction
of an additional ring system. Primary amines and aldehydes
react under acid catalysis to form imine derivatives as the
condensation products. The reaction is reversible and the
formation of imine requires the presence of acid, which is
necessary for subsequent elimination of water. Our attention
1 3