Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Communications
Alder reactions at the HF/3-21G level of theory.[18] The
lowest-energy transition-state conformation clearly resem-
bled 17, and the next lowest transition-state conformation was
5.7 kcalmolꢀ1 higher in energy. This analysis predicts that 5
should cycloisomerize through conformer 17, an asynchro-
nous transition state that has an anti relationship between the
two carbonyl groups that are part of the acyl tetronate moiety.
From the vantage of 6, only three seemingly straightfor-
ward transformations were needed to reach the target
structure. Fortunately, dimethyldioxirane was well suited to
the oxidation of the newly formed cyclohexenyl double
bond.[19] This site- and diastereoselective oxidation produced
the desired epoxide and was followed by a quantitative
nucleophilic demethylation of the acyl methyl tetronate
substructure. This two-step reaction sequence afforded 18, a
compound that appeared to be an ideal precursor to
abyssomicin C (1). Because of its carboxylic acid like
nature, the hydroxy group in 18 is a weak nucleophile.
Compound 18 is essentially impervious to basic reagents; all
efforts to achieve base-induced heterocyclizations to abysso-
micin C were unsuccessful. After much experimentation, we
found that warming a solution of 18, para-toluenesulfonic acid
monohydrate, and lithium chloride in acetonitrile to 508C for
2 h resulted in the formation of abyssomicin C (1) and a
regioisomeric substance that we named “iso-abyssomicin C”.
Under these conditions, the ratio of these two compounds is
1:1, but they are readily separated by chromatography on
silica gel. Optical rotation studies of our sample of synthetic
abyssomicin C (1) showed an [a]2D0 value of ꢀ40 (c = 0.1,
MeOH), and spectroscopic studies (1H and 13C NMR, UV,
and IR) resulted in data that matched those reported by
Süssmuth and co-workers.[5]
In summary, a concise enantioselective synthesis of (ꢀ)-
abyssomicin C was achieved in 15 steps from the known
meso-2,4-glutaric anhydride (7) by a reaction sequence that
features a highly diastereoselective Diels–Alder macrocycli-
zation. We can procure significant amounts of the natural
product by this route, which should facilitate an investigation
of the intriguing biological properties of abyssomicin C. It was
proposed that the rigid oxabicyclo[2.2.2]octane substructure
of abyssomicin C (1) may serve as a structural surrogate for
the conformation of chorismate in solution and that its
electrophilic enone system may inactivate one of the enzymes
involved in the biosynthesis of pABA in bacteria (Scheme 1)
through covalent alkylation.[5] By adapting the chemistry
described herein, we anticipate that it will be possible to
synthesize affinity-tagged variants of abyssomicin C for
studies of its potential chemical reactivity and binding
properties in human-tissue proteomes.[20,21] This information
would be part of a comprehensive analysis of the potential of
abyssomicin C as an antibacterial drug candidate. Further
studies of this fascinating early-stage inhibitor of the biosyn-
thesis of tetrahydrofolate in bacteria are clearly warranted.
[1] O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98 – 122.
[2] For selected reviews and discussions of intermolecular and
intramolecular Diels–Alder reactions, see: a) W. Oppolzer,
Comprehensive Organic Synthesis, Vol. 5 (Eds.: B. M. Trost, I.
Fleming), Pergamon, New York, 1991, pp. 315 – 399; b) W. R.
Roush, Comprehensive Organic Synthesis, Vol. 5 (Eds.: B. M.
Trost, I. Fleming), Pergamon, New York, 1991, pp. 513 – 550;
c) ACS Monograph 180: G. Desimoni, G. Tacconi, A. Barco,
G. P. Pollini, Natural Products Synthesis Through Pericyclic
Reactions, American Chemical Society, Washington, DC, 1983;
d) E. J. Corey, Angew. Chem. 2002, 114, 1724 – 1741; Angew.
Chem. Int. Ed. 2002, 41, 1650 – 1667; e) K. C. Nicolaou, S. A.
Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem.
2002, 114, 1742 – 1773; Angew. Chem. Int. Ed. 2002, 41, 1668 –
1698.
[3] a) H. Oikawa, K. Katayama, Y. Suzuki, A. Ichihara, J. Chem.
Soc. Chem. Commun. 1995, 1321 – 1322; b) S. Laschat, Angew.
Chem. 1996, 108, 313 – 315; Angew. Chem. Int. Ed. Engl. 1996,
35, 289 – 291; c) K. Auclair, A. Sutherland, J. Kennedy, D. J.
Witter, J. P. Van den Heever, C. R. Hutchinson, J. C. Vederas, J.
Am. Chem. Soc. 2000, 122, 11519 – 11520; d) T. Ose, K.
Watanabe, T. Mie, M. Honma, H. Watanabe, M. Yao, H.
Oikawa, I. Tanaka, Nature 2003, 422, 185 – 189; e) T. Ose, K.
Watanabe, M. Yao, M. Honma, H. Oikawa, I. Tanaka, Acta
Crystallogr. Sect. D 2004, 60, 1187 – 1197; f) C. R. W. Guimar¼es,
M. Udier-Blagovic, W. L. Jorgensen, J. Am. Chem. Soc. 2005,
127, 3577 – 3588.
[4] E. M. Stocking, R. M. Williams, Angew. Chem. 2003, 115, 3186 –
3223; Angew. Chem. Int. Ed. 2003, 42, 3078 – 3115.
[5] B. Bister, D. Bischoff, M. Ströbele, J. Riedlinger, A. Reicke, F.
Wolter, A. T. Bull, H. Zꢀhner, H.-P. Fiedler, R. D. Süssmuth,
Angew. Chem. 2004, 116, 2628 – 2630; Angew. Chem. Int. Ed.
2004, 43, 2574 – 2576.
[6] J. Riedlinger, A. Reicke, H. Zꢀhner, B. Krismer, A. T. Bull, L. A.
Maldonado, A. C. Ward, M. Goodfellow, B. Bister, D. Bischoff,
R. D. Süssmuth, H.-P. Fiedler, J. Antibiot. 2004, 57, 271 – 279.
[7] a) J.-P. Rath, M. Eipert, S. Kinast, M. E. Maier, Synlett 2005,
314 – 318; b) J.-P. Rath, S. Kinast, M. E. Maier, Org. Lett. 2005, 7,
3089 – 3092.
[8] a) K. Takeda, M. Sato, E. Yoshii, Tetrahedron Lett. 1986, 27,
3903 – 3906; b) J. Uenishi, R. Kawahama, O. Yonemitsu, J. Org.
Chem. 1997, 62, 1691 – 1701.
[9] a) E. J. Corey, M. Petrzilka, Tetrahedron Lett. 1975, 16, 2537 –
2540; b) G. Stork, E. Nakamura, J. Am. Chem. Soc. 1983, 105,
5510 – 5512; c) H. Dyke, P. G. Steel, E. J. Thomas, J. Chem. Soc.
Perkin Trans. 1 1989, 525 – 528; d) K. Takeda, Y. Igarashi, K.
Okazaki, E. Yoshii, K. Yamaguchi, J. Org. Chem. 1990, 55, 3431 –
3434; e) J. A. McCauley, K. Nagasawa, P. A. Lander, S. G.
Mischke, M. A. Semones, Y. Kishi, J. Am. Chem. Soc. 1998,
120, 7647 – 7648.
[10] L. A. Paquette, S. L. Boulet, Synthesis 2002, 888 – 894.
[11] M. Lautens, J. T. Colucci, S. Hiebert, N. D. Smith, G. Bouchain,
Org. Lett. 2002, 4, 1879 – 1882.
[12] R. Ozegowski, A. Kunath, H. Schick, Tetrahedron: Asymmetry
1993, 4, 695 – 698.
[13] A. J. Mancuso, D. Swern, Synthesis 1981, 165 – 185.
[14] For general review articles on the deprotection of silyl ethers,
see: a) J. Muzart, Synthesis 1993, 11 – 27; b) T. D. Nelson, R. D.
Crouch, Synthesis 1996, 1031 – 1069; for applications of the
removal of TES under Swern conditions, see: c) G. A. Tolstikov,
M. S. Miftakhov, M. E. Adler, N. G. Komissarov, O. M. Kuznet-
sov, N. S. Vostrikov, Synthesis 1989, 940 – 942; d) G. C. Hirst,
T. O. Johnson, Jr., L. E. Overman, J. Am. Chem. Soc. 1993, 115,
2992 – 2993; e) G. H. Posner, K. Crawford, M.-L. Siu-Caldera,
G. S. Reddy, S. F. Sarabia, D. Feldman, E. van Etten, C. Mathieu,
L. Gennaro, P. Vouros, S. Peleg, P. M. Dolan, T. W. Kensler, J.
Received: June 17, 2005
Published online: September 15, 2005
Keywords: desymmetrization · Diels–Alder reaction · enzymes ·
.
naturalproducts
6536
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 6533 –6537