phosphorescent conjugated polymers should have the practical
effect of increasing the dynamic range and resolution of optical
oxygen sensing since a wider range of lifetimes would be
available for a given range of oxygen concentrations.
References
1 (a) D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev.,
2000, 100, 2537; (b) T. M. Swager, Acc. Chem. Res., 1998, 31, 201.
2 (a) B. Liu, B. S. Gaylord, S. Wang and G. C. Bazan, J. Am. Chem.
Soc., 2003, 125, 6705; (b) D. T. McQuade, A. H. Hegedus and
T. M. Swager, J. Am. Chem. Soc., 2000, 122, 12389.
3 (a) J.-S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998, 120,
5321; (b) J.-S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998,
120, 12389.
Conclusion
We have synthesized and characterized the optical properties
of a new organometallic poly(phenylene) conjugated polymer
based on a monocyclometalated platinum (II) complex. The
4 D. S. Moore, Rev. Sci. Instrum., 2002, 75, 2499.
5 (a) Y. Liu, Y. Li and K. S. Schanze, J. Photochem. Photobiol., C,
2002, 3, 1; (b) R. P. Kingsborough and T. M. Swager, Prog. Inorg.
Chem., 1999, 48, 123.
3
emission of this material is dominated by the polymeric LC
transition, with a small contribution from the MLCT band
that decreases the forbidden nature of intersystem crossing and
leads to strong phosphorescence. The lower energy of the LC
state, due to extension of the cyclometalated chromophore,
results in a relatively long 14 ms lifetime at room temperature
in THF solution. The vastly different optical properties
observed between 8 and 6 or 7 are due to the latter containing
the more easily oxidized phenyl-substituted ligand which
increases mixing with the CT state. This difference is not
apparent between P1 and P2, due to the lower energy of the
LC state in the polymers. The polymeric nature of this
conjugated material also gives a sensitivity improvement for
dissolved oxygen quantification.
6 (a) A. Ko¨hler, J. S. Wilson, R. H. Friend, M. K. Al-Suti,
M. S. Khan, A. Gerhard and H. Ba¨ssler, J. Chem. Phys., 2002, 116,
9457; (b) Y. Liu, S. Jiang, K. Glusac, D. H. Powell, D. F. Anderson
and K. S. Schanze, J. Am. Chem. Soc., 2002, 124, 12412; (c)
N. Chawdhury, A. Ko¨hler, R. H. Friend, M. Younus, N. J. Long,
P. R. Raithby and J. Lewis, Macromolecules, 1998, 31, 722.
7 N. J. Turro, Modern Molecular Photochemistry, University Science
Books, Saulsalito, 1991, p. 125.
8 M. A. Baldo, D. F. O’Brien, M. E. Thompson and S. R. Forrest,
Phys. Rev. B., 1999, 60, 14422.
9 (a) M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000,
403, 750; (b) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-
Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest and
M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304.
10 J. Brooks, Y. Babayan, S. Lamansy, P. I. Djurovich, I. Tsyba,
R. Bau and M. E. Thompson, Inorg. Chem., 2002, 41, 3055.
11 (a) Y. Liu, S. Jiang and K. S. Schanze, Chem. Commun., 2003, 650;
(b) X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng and
S.-A. Chen, J. Am. Chem. Soc., 2003, 125, 636; (c) P. T. Furuta,
L. Deng, S. Garon, M. E. Thompson and J. M. J. Fre´chet, J. Am.
Chem. Soc., 2004, 126, 15388.
12 A. J. Sandee, C. K. Williams, N. R. Evans, J. E. Davies,
C. E. Boothby, A. Ko¨hler, R. H. Friend and A. B. Holmes,
J. Am. Chem. Soc., 2004, 126, 7041.
13 (a) K. D. Glusac, S. Jiang and K. S. Schanze, Chem. Commun.,
2002, 2504; (b) S. Liu and K. S. Schanze, Chem. Commun., 2004,
1510.
14 M. J. Marsella, D. Fu and T. M. Swager, Adv. Mater., 1995, 7, 145.
15 H. Zheng, C. K. Lai and T. M. Swager, Chem. Mater., 1995, 7,
2067.
16 L. Chassot and A. von Zelewsky, Inorg. Chem., 1987, 26, 2814.
17 A. Ko¨hler and D. Belijonne, Adv. Funct. Mater., 2004, 14, 11.
18 E. Hennebicq, G. Pourtois, G. D. Scholes, L. M. Herz,
D. M. Russell, C. Silva, S. Setayesh, A. C. Grimsdale, K. Mu¨llen,
J.-L. Bre´das and D. Beljonne, J. Am. Chem. Soc., 2005, 127, 4744.
19 F. Wilkinson and A. A. Abdel-Shafi, J. Phys. Chem. A, 1999, 103,
5425.
20 P. M. Gewehr and D. T. Delpy, Med. Biol. Eng. Comput., 31, 2.
21 (a) C. N. Jayarajah, A. Yekta, I. Manners and M. A. Winnik,
Macromolecules, 2000, 33, 5693; (b) J. M. Costa-Ferna´ndez,
M. E. Diaz-Garc´ıa and A. Sanz-Medel, Anal. Chim. Acta, 1998,
360, 17; (c) M. M. F. Choi and D. Xiao, Anal. Chim. Acta, 1999,
387, 197.
Our future efforts will be focused in several different
directions. These include the development of phosphorescent
conjugated polymers that are highly emissive in the solid
state or that are emissive under ambient conditions. In
addition, we are currently investigating the unique chemistry
and excited state features of organometallic complexes, such
as oxidative addition, as novel transduction mechanisms
for the trace detection of potentially dangerous vapor phase
analytes.
Acknowledgements
The authors thank Sandia National Laboratories, The
Technical Support Working Group, and The Transportation
Security Administration for support of this research, as well as
Dr S. Kooi of the MIT Institute for Soldier Nanotechnologies
for assistance with time-resolved spectroscopy.
Samuel W. Thomas III, Shigeyuki Yagi and Timothy M. Swager*
Department of Chemistry, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA, USA.
E-mail: tswager@mit.edu; Fax: 617-253-7929; Tel: 617-253-4423
This journal is ß The Royal Society of Chemistry 2005
J. Mater. Chem., 2005, 15, 2829–2835 | 2835