Macromolecules
Article
(6) Ungar, G.; Stejny, J.; Keller, A.; Bidd, I.; Whiting, M. Science
1985, 229 (4711), 386−389.
may be attributed to cocrystallization of the pentadecyl branch
onto the crystal surface.
(7) Bunn, C. Trans. Faraday Soc. 1939, 35 (1), 0482−0490.
(8) Alamo, R.; Mandelkern, L. Macromolecules 1989, 22 (3), 1273−
1277.
Solution-grown single crystal lamella thickness measure-
ments provide additional evidence of a clear change in the
morphology of these polymers from a situation where the
methyl branch is incorporated into the solution-grown single
crystal to one where branches of greater mass are mostly
expelled from the crystal.
(9) Alamo, R.; Mandelkern, L. Thermochim. Acta 1994, 238, 155−
201.
(10) Hu, W.; Srinivas, S.; Sirota, E. Macromolecules 2002, 35 (13),
5013−5024.
(11) deBallesteros, O.; Auriemma, F.; Guerra, G.; Corradini, P.
Macromolecules 1996, 29 (22), 7141−7148.
CONCLUSIONS
■
(12) Crist, B.; Howard, P. Macromolecules 1999, 32 (9), 3057−3067.
(13) Crist, B.; Williams, D. J. Macromol. Sci., Phys. 2000, B39 (1), 1−
13.
Metathesis polycondensation chemistry has been employed to
control the crystalline morphology of a series of 13 precision
branched polyethylene structures, the branch being placed on
every 39th carbon and varying in size from methyl to
pentadecyl. The primary structures of both monomers and
polymers have been confirmed via 1H NMR, 13C NMR, and IR
spectroscopy to prove the purity of the monomers and the
absence of any undesired side reactions during polycondensa-
tion and hydrogenation steps. Methyl branches, being
incorporated into the polymer crystal, decrease the melting
point and the heat of fusion of ADMET PE. On the other
hand, increasing the size of the branch to ethyl and larger yields
a set of polymers with a completely different morphology, with
the branches mostly expelled from the polymer crystal. WAXD
patterns of melt-grown crystals and lamella thicknesses of the
solution-grown single crystals also support this argument.
(14) Androsch, R.; Blackwell, J.; Chvalun, S.; Wunderlich, B.
Macromolecules 1999, 32 (11), 3735−3740.
(15) Richardson, M.; Flory, P.; Jackson, J. Polymer 1963, 4 (2), 221−
236.
(16) Perez, E.; Vanderhart, D.; Crist, B.; Howard, P. Macromolecules
1987, 20 (1), 78−87.
(17) Howard, P.; Crist, B. J. Polym. Sci., Part B: Polym. Phys. 1989, 27
(11), 2269−2282.
(18) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem.,
Int. Ed. 1955, 67 (16), 426−426.
(19) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem.,
Int. Ed. 1955, 67 (19−2), 541−547.
(20) Tait, P. CHEMTECH 1975, 5 (11), 688−692.
(21) Sinn, H.; Kaminsky, W.; Vollmer, H.; Woldt, R. Angew. Chem.,
Int. Ed. Engl. 1980, 19 (5), 390−392.
(22) Kaminsky, W.; Miri, M.; Sinn, H.; Woldt, R. Makromol. Chem.,
Rapid Commun. 1983, 4 (6), 417−421.
(23) Kaminsky, W.; Hoff, M.; Derlin, S. Macromol. Chem. Phys. 2007,
208 (13), 1341−1348.
(24) Gates, D.; Svejda, S.; Onate, E.; Killian, C.; Johnson, L.; White,
P.; Brookhart, M. Macromolecules 2000, 33 (7), 2320−2334.
(25) Mattice, W. Macromolecules 1983, 16 (3), 487−490.
(26) Sworen, J.; Smith, J.; Wagener, K.; Baugh, L.; Rucker, S. J. Am.
Chem. Soc. 2003, 125 (8), 2228−2240.
(27) Sworen, J.; Smith, J.; Berg, J.; Wagener, K. J. Am. Chem. Soc.
2004, 126 (36), 11238−11246.
(28) Sworen, J.; Wagener, K. Macromolecules 2007, 40 (13), 4414−
4423.
(29) Rojast, G.; Wagener, K. Macromolecules 2009, 42 (6), 1934−
1947.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and spectral data for all monomers
and polymers. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Present Address
§Department of Chemistry and the Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana−Champaign, Urbana, IL 61801.
(30) Rojas, G.; Berda, E.; Wagener, K. Polymer 2008, 49 (13−14),
2985−2995.
Notes
(31) Rojas, G.; Inci, B.; Wei, Y. Y.; Wagener, K. B. J. Am. Chem. Soc.
2009, 131 (47), 17376−17386.
The authors declare no competing financial interest.
(32) Wagener, K.; Valenti, D.; Hahn, S. Macromolecules 1997, 30
(21), 6688−6690.
ACKNOWLEDGMENTS
■
(33) Smith, J.; Brzezinska, K.; Valenti, D.; Wagener, K. Macro-
molecules 2000, 33 (10), 3781−3794.
The authors thank the National Science Foundation (DMR-
0703261) and the International Max Planck Research School
for Polymer Materials (IMPRS) for financial support. The
Army Research Office contributed to the catalyst work
necessary to make proper selections. We also thank Michael
Bach at Max Planck Institute for Polymer Research for his help
with X-ray measurements and Sandra Seywald at Max Planck
Institute for Polymer Research for her help with GPC
measurements.
(34) Lieser, G.; Wegner, G.; Smith, J.; Wagener, K. Colloid Polym. Sci.
2004, 282 (8), 773−781.
(35) Baughman, T.; Sworen, J.; Wagener, K. Macromolecules 2006, 39
(15), 5028−5036.
(36) Zuluaga, F.; Inci, B.; Nozue, Y.; Hosoda, S.; Wagener, K.
Macromolecules 2009, 42 (14), 4953−4955.
(37) Hosoda, S.; Nozue, Y.; Kawashima, Y.; Suita, K.; Seno, S.;
Nagamatsu, T.; Wagener, K.; Inci, B.; Zuluaga, F.; Rojas, G.; Leonard,
J. Macromolecules 2011, 44 (2), 313−319.
(38) Baughman, T.; Sworen, J.; Wagener, K. Tetrahedron 2004, 60
(48), 10943−10948.
REFERENCES
■
(39) Rojas, G.; Baughman, T.; Wagener, K. Synth. Commun. 2007, 37
(22−24), 3923−3931.
(1) Till, P. J. Polym. Sci. 1957, 24 (106), 301−306.
(2) Strobl, G. Progress in Understanding of Polymer Crystallization;
Springer: Heidelberg, 2007.
(40) Rojas, G.; Wagener, K. J. Org. Chem. 2008, 73 (13), 4962−4970.
(41) Ulman, M.; Grubbs, R. J. Org. Chem. 1999, 64 (19), 7202−7207.
(42) Hong, S.; Day, M.; Grubbs, R. J. Am. Chem. Soc. 2004, 126 (24),
7414−7415.
(3) Organ, S.; Keller, A. J. Mater. Sci. 1985, 20 (5), 1571−1585.
(4) Organ, S.; Keller, A. J. Mater. Sci. 1985, 20 (5), 1586−1601.
(5) Organ, S.; Keller, A. J. Mater. Sci. 1985, 20 (5), 1602−1615.
3375
dx.doi.org/10.1021/ma3002577 | Macromolecules 2012, 45, 3367−3376