5
6
7
8
9
R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh and
H. Fujii, Science, 1998, 280, 560.
R. A. Periana, O. Mirinov, D. J. Taube and S. Gamble, Chem.
Commun., 2002, 2376.
P. J. E. de Rege, J. A. Gladysz and I. T. Horvath, Adv. Synth.
Catal., 2002, 344, 1059.
G. A. Olah, G. K. S. Prakash and J. Sommer, Superacids, Wiley,
New York, 1985.
the observed variation. The hydrogen bonding of the metho-
nium-ion-like transition state with the counter anion decreases
as the acidity increases. The importance of solvation has been
demonstrated by theoretical studies for HF-based systems.
A
computational study on methane protonation by
[H2SO3Fþ]-like species would be helpful to understand the nat-
ure of solvation of methonium ion and then to compare the
activated complex involved in both systems. In line with these
results it seems even more risky to relate the rate of exchange
between methane and various deuterated solid acids to the
acidity of such solid acidic catalysts as has been suggested
recently.30,31
H. Hogeveen and C. J. Gaasbeek, Rec. Trav. Chim. (Pays Bas),
1968, 87, 319.
10 G. A. Olah and R. H. Schlosberg, J. Am. Chem. Soc., 1968,
90, 2726.
11 G. A. Olah, Y. Halpern, J. Shen and Y. K. Mo, J. Am. Chem.
Soc., 1973, 95, 4960.
12 V. L. Tal’roze and A. K. Ljubimova, J. Mass Spectrom., 1998,
33, 502.
13 P. R. Schreiner, Angew. Chem., Int. Ed., 2000, 39, 3239.
14 D. Marx and M. Parrinello, Science, 1999, 284, 59.
15 G. A. Olah and G. Rasul, Acc. Chem. Res., 1997, 30, 245.
16 H. Muller, W. Kutzelnigg, J. Noga and W. Klopper, J. Chem.
Phys., 1997, 106, 1863.
17 P. R. Schreiner, S.-J. Kim, H. F. Schaefer III and P. R. Schleyer,
J. Chem. Phys., 1993, 99, 3716.
18 A. Goeppert, P. Diner, P. Ahlberg and J. Sommer, Chem.-Eur. J.,
2002, 8, 3277.
19 P. Ahlberg, A. Karlsson, A. Goeppert, S. O. N. Lill, P. Diner and
J. Sommer, Chem.-Eur. J., 2001, 7, 1936.
20 H. Hogeveen and A. F. Bickel, Rec. Trav. Chim. (Pays Bas),
1969, 88, 371.
21 J. Sommer, J. Bukala and M. Hachoumy, Res. Chem. Intermed.,
1996, 22, 753.
22 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve,
B. Alonso, J. O. Durand, B. Bujoli, Z. H. Gan and G. Hoatson,
Magn. Reson. Chem., 2002, 40, 70.
Conclusion
Kinetic studies of the H/D exchange between methane and
DSO3F–SbF5 in the concentration range of 19 to 49 mol %
SbF5 were performed by means of in situ NMR spectroscopy.
A relationship between the rates of the isotopic exchange and
the acidity of the superacid was established. The free enthalpy
of activation of the exchange process appears to be indepen-
dent of the system’s acidity, which seems to indicate only
minor changes in the transition state in the studied acidity
range. However, a substantial change in the entropy of activa-
tion is observed, related to solvation by the acid system. This is
in line with results reported for the HF–SbF5 system in which
solvation of the methonium ion plays an important role.27
23 R. Jost and J. Sommer, Rev. Chem. Intermed., 1988, 9, 171.
24 T. H. Lowry and A. Schueller-Richardson, Mechanism and
Theory in Organic Chemistry, Harper & Rowe, New York,
1987, 3rd edn.
25 J. C. Culmann, M. Fauconet, R. Jost and J. Sommer, New J.
Chem., 1999, 23, 863.
Acknowledgements
Financial support of the Loker Hydrocarbon Institute of USC
(Los Angeles, CA) is gratefully acknowledged.
26 J. Kuhn-Velten, M. Bodenbinder, R. Brochler, G. Hagele and
F. Aubke, Can. J. Chem.-Rev. Can. Chim., 2002, 80, 1265.
27 S. Raugei and M. L. Klein, J. Phys. Chem. B, 2002, 106, 11 596.
28 P. M. Esteves, A. Ramirez-Solis and C. J. A. Mota, J. Am. Chem.
Soc., 2002, 124, 2672.
References
1
G. A. Olah and A. Molnar, Hydrocarbon Chemistry, Wiley,
New York, 1995.
H. Schulz, Appl. Catal., A, 1999, 186, 3.
J. H. Lunsford, Angew. Chem., Int. Ed. Engl., 1995, 34, 970.
J. H. Lunsford, Catal. Today, 2000, 63, 165.
29 D. Kim and M. L. Klein, J. Phys. Chem. B, 2000, 104, 10 074.
30 B. Schoofs, J. A. Martens, P. A. Jacobs and R. A. Schoonheydt,
J. Catal., 1999, 183, 355.
31 B. Schoofs, J. Schuermans and R. A. Schoonheydt, Microporous
Mesoporous Mater., 2000, 35–36, 99.
2
3
4
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 2 6 6 – 2 6 9
269