Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
6
7
8
regioselective formation of C–Se bond at the C3-postion of
coumarin skeleton is realized by using PIFA as a promoter at
room temperature. Mild reaction conditions, good tolerance with
different functional groups, broad substrate scope and short
reaction time are the remarkable features of this transformation.
Additionally, this protocol is suitable for the direct regioselective
sulfenylation of coumarines at the C3-position and selenation of
other (hetero)arenes. Further investigations into the applications
of this new type of selenyl-coumarin compounds in synthetic
chemistry and drug discovery are currently underway in our
laboratory.
DOI: 10.1039/C9CC09001K
2019, 21, 2064.
(a) S. G. Modha, V. P. Mehtab and E. V. V.der Eycken, Chem.
Soc. Rev., 2013, 42, 5042; (b) R. L. Brutchey, Acc. Chem. Res.,
2015, 48, 2918.
For selected publication on selenation, see: (a) D. Kundu, S.
Ahammed and B. C. Ranu, Green. Chem., 2012, 14, 2024; (b)
D. Kundu, S. Ahammed and B. C. Ranu, Org. Lett., 2014, 16,
1814; (c) S. Vásquez-Céspedes, A. Ferry, L. Candish and F.
Glorius, Angew. Chem. Int. Ed., 2015, 54, 5772; (d) A. J.
Brown, D. Pinkowicz, M. R. Saber and K. R. Dunbar, Angew.
Chem. Int. Ed., 2015, 127, 5864; (e) A. Mandal, S. Dana, H.
Sahoo, G. S. Grandhi and M. Baidya, Org. Lett., 2017, 19,
2430; (f) Q.-B. Zhang, Y.-L. Ban, P.-F. Yuan, S.-J. Peng, J.-G.
Fang, L.-Z. Wu and Q. Liu, Green. Chem., 2017, 19, 5559; (g)
H. Liu, Y. Fang, S.-Y. Wang and S.-J. Ji, Org. Lett., 2018, 20,
930; (h) C. Ding, Y. Yu, Q. Yu, Z. Xie, Y. Zhou, J. Zhou, G. Liang
and Z. Song, ChemCatChem. 2018, 10, 5397.
This
work
was
supported
by
the National Key Research Project (2017YFA0506000), National
Natural Science Foundation of China (21807080), Natural
Science Foundation of Zhejiang Province (LQ18B020004),
Wenzhou Medical University Research Start-up Fund
(QTJ17007).
9
(a) A. Jana, A. K. Panday, R. Mishra, T. Parvin, L. H.
Choudhury, ChemistrySelect. 2017, 2, 9420; (b) D. Yang, G. Li,
C. Xing, W. Cui, K. Li and W, Wei. Org. Chem. Front., 2018, 5,
2974; (c)D. Das, P. Mukherjee and A. R. Das, ChemistrySelect.,
2019, 4, 1971.
Conflicts of interest
There are no conflicts to declare.
10 (a) Y. Yu, Y. Zhou, Z. Song and G. Liang, Org. Biomol. Chem.,
2018, 16, 4958; (b)Z. Song, Y. Zhou, W. Zhang, L. Zhan, Y. Yu,
Y. Chen, W. Jia, Z. Liu, J. Qian, Y. Zhang, C. Li andG. Liang, Eur.
J. Med. Chem., 2019, 171, 54.
Notes and references
1
(a) R. M. Christie and C. H. Lui, Dyes. Pigm., 2000, 47, 79; (b)
R. Dayam, R. Gundla, L. O. Al-Mawsawi and N. Neamati,
Med. Res. Rev., 2008,28, 118; (c) M. Abdallah, A. Hijazi, B.
Graff, J. P. Fouassier, G. Rodeghiero, A. Gualandi, F. Dumur,
P.G. Cozzi and J. Lalevée, Polym. Chem., 2019, 10, 872.
(a) C. Wang, C. Wu, J. Zhu, R. H. Miller and Y. Wang, J. Med.
Chem., 2011, 54, 2331; (b) M. de Souza Santos, M. P. F. de
Morais Del Lama, L. A. Deliberto, F. da Silva Emery, M. T.
Pupo and R. M. Z. G. Naal, Arch. Pharm. Res., 2013, 36, 731.
(a) M. S. Schiedel, C. A. Briehn and P. Bauerle, Angew. Chem.,
Int. Ed., 2001, 40, 4677; (b)M. Mosrin, G. Monzon, T. Bresser
and P.Knochel, Chem. Commun., 2009, 37, 5615; (c) S.
Martins, P. S. Branco, M. C. de la Torre, M. A. Sierra and A.
Pereira, Synlett., 2010, 19, 2918; (d) M. J. Matos, S. Vazquez-
Rodriguez, F. Borges, L. Santana and E. Uriarte, Tetrahedron.
Lett., 2011, 52, 1225; (e) J. Gordo, J. Avo, A. J. Parola, J. C.
Lima, A. Pereira and P. S. Branco, Org. Lett., 2011, 13, 5112;
(f) F. Jafarpour, S. Zarei, M. B. A. Olia, N.; Jalalimanesh and S.
Rahiminejadan, J. Org. Chem., 2013, 78, 2957.
11 For selected publication on reactions using hypervalent
iodine reagents as promoters, see: (a) A. P. Antonchick and L.
Burgmann, Angew. Chem. Int. Ed.,2013, 52, 3267; (b) Z. Wu,
D. Wang, Y. Liu, L. Huan and C. Zhu, J. Am. Chem. Soc., 2017,
139, 1388; (c) R. Sakamoto, H. Kashiwagi and K. Maruoka,
Org. Lett., 2017, 19, 5126; (d) X. Wu, H, Zhang, N, Tang, Z.
Wu, D. Wang, M. Ji, Y. Xu, M. Wang and C. Zhu, Nat.
Commun., 2018, 9, 3343; (e) N. Tang, X. Wu and C. Zhu,
Chem. Sci., 2019, 10, 6915; (f) J. Xu, H. Yang, H. Cai, H. Bao,
W. Li and P. Zhang, Org Lett., 2019, 21, 4698; (g) C. F. Meyer,
S. M. Hell, A. Misale, A. A. Trabanco and V. Gouverneur.
Angew. Chem. Int. Ed., 2019, 58, 8829; (h) J. M. Lear, J. Q.
Buquoi, X. Gu, K. Pan, D. N. Mustafa and D. A. Nagib, Chem
Commun., 2019, 55, 8820; (i) S. Mao, K. Luo, L. Wang, H.-Y.
Zhao, A. Shergalis, M. Xin, N. Neamati, Y. Jin and S.-Q. Zhang,
Org. Lett., 2019, 21, 2365.
2
3
12 (a) J. Ścianowski, ChemInform, 2005, 46, 3331; (b) D. Singh,
A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D.
Rodrigues, A. L.Braga, Org. Lett, 2010, 41, 3288.
4
5
(a) F. Jafarpour, H. Hazrati, N. Mohasselyazdi, M. Khoobi and
A. Shafiee, Chem. Commun.,2013, 49, 10935; (b) M. Min, Y.
Kim and S. Hong, Chem. Commun., 2013, 49, 196; (c) X. Mi,
M. Huang, J. Zhang, C. Wang and Y. Wu, Org. Lett., 2013, 15,
6266; (d) Z. She, Y. Shi, Y. Huang, Y. Cheng, F. Song and J. You,
Chem. Commun., 2014, 50, 13914; (e) X. Wang, S. Y. Li, Y. M.
Pan, H. S. Wang, Z. F. Chen and K. B. Huang, J. Org. Chem.,
2015, 80, 2407.
(a) S.-L. Zhou, L.-N. Guo and X.-H. Duan, Eur. J. Org. Chem.,
2014, 36, 8094; (b)A. Banerjee, S. K. Santra, N. Khatun, W. Ali
and B. K. Patel, Chem. Commun., 2015, 51, 15422; (c) B. Niu,
W. Zhao, Y. Ding, Z. Bian, C. U.Pittman, A. Zhou and H.Ge, J.
Org. Chem.,2015, 80,7251; (d) L. Dian, H. Zhao, D. Zhang-
Negrerie and Y. Du, Adv. Synth. Catal., 2016, 358, 2422. (e)F.
Jafarpour and M. Abbasnia, J. Org. Chem.,2016, 81, 11982;(f)
H. Zhuang, R. Zeng and J. Zou, Chin. J. Chem., 2016, 34, 368;
(g) S. H. Doan, V. H. H. Nguyen, T. H. Nguyen, P. H. Pham, N.
N. Nguyen, A. N. Q. Phan, T. N. Tu and N. T. S. Phan, RSC.
Adv., 2018, 8, 10736; (h) F. Jafarpour and M. Darvishmolla,
Org. Biomol. Chem., 2018, 16, 3396.
13 (a) S. K. R. Parumala and R. K. Peddinti, Green Chem., 2015,
17, 4068; (b) S. Saima, D. Equbal, A. G. Lavekar and A. K.
Sinha, Org Biomol Chem., 2016, 14, 6111; (c) S. Paul, R.
Shrestha, T. N. J. I. Edison, Y. R. Lee, and S. H. Kim, Adv Synth
Catal., 2016, 358, 3050; (d) T. Guo and X. N. Wei, Synlett.,
2018, 28, 2499; (e) Z. Yang, Y. Yan, A. Li, J. Liao, L. Zhang, T.
Yang and C. Zhou, New J Chem., 2018, 42, 14738; (f) R. Zhang,
S. Jin, Y. Wan, S. Lin and Z. Yan, Tetrahedron Lett., 2018, 59,
841; (g) C. Anjaiah, M. Nagamani, C. Abraham Lincoln, and D.
Ashok, Russ J Gen Chem., 2018. 88, 2149.
14 In scheme 2c, the reaction of coumarin and diphenyl
diselenide was hampered by adding 1,1-diphenyl ethylene;
the 8, which was formed by the reaction of selenyl radical
and 1,1-diphenyl ethylene, was isolated. These results
suggested that the reaction might proceed via a radical
process. In many reports, 1,1-diphenyl ethylene was added
to reactions to confirm if the reactions involved radicals,
such as: reference 6(a), 6(b).
15 K. Okuma and J.-i. Seto, Phosphorus, Sulfur, and Silicon.,
2010, 185, 1014.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins