Organic Letters
Letter
In summary, we have discovered that formal B−H insertion
reactions of NHC-boranes with diazoesters can be effected by
additionofsmallamountsofdiiodine. Thediiodineisaprecatalyst
that reacts rapidly with the NHC-borane to produce an NHC-
boryliodidecatalyst.9 Thereactionsareeasytoconduct andoccur
rapidly at room temperature. There is no extractive workup, and
the mixture is simply concentrated prior to flash chromatography.
Overall, this B−H insertion reaction resembles the previous
Rh-catalyzed transformations,1a and even the reaction conditions
are very similar (only the catalyst is different). However, the
mechanisms of these two reactions are, generally, opposites of
each other. In the Rh-catalyzed reactions, the key catalytic species
(a rhodium carbene) comes from the diazo ester and reacts
directly with the NHC-borane. In this new transformation, the
key catalytic species (NHC−BH2I)comes from theNHC-borane
and reacts directly with the diazoester. In the Rh-catalyzed
transformation, the NHC-borane serves as a hydride donor in the
leading step with a rhodium carbene serving as an electrophile.
Then C−B bond formation follows. In the new transformation,
C−B bond formation is leading and involves reaction of the boryl
iodide as an electrophile with the diazoester as a nucleophile.
Then hydride transfer follows. In short, similarities in reaction
components and conditions belie major differences.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the National Science Foundation for funding.
■
REFERENCES
■
(1) (a) Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
(b) Cheng, Q. Q.; Zhu, S. F.; Zhang, Y. Z.; Xie, X. L.; Zhou, Q. L. J. Am.
Chem. Soc. 2013, 135, 14094. (c) Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.;
Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268. (d) Allen, T. H.; Curran, D.
P. J. Org. Chem. 2016, 81, 2094. (e) Cheng, Q.; Xu, H.; Zhu, S.; Zhou, Q.
Huaxue Xuebao 2015, 73, 326. (f) Hyde, S.; Veliks, J.; Liegault, B.; Grassi,
D.; Taillefer, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2016, 55, 3785.
(2) St. Denis, J. D.; He, Z.; Yudin, A. K. ACS Catal. 2015, 5, 5373.
(3) Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. J.
Am. Chem. Soc. 2017, 139, 3784.
(4) Rh2(esp)2 is rhodium bis-[3,3′-(1,3-phenylene)bis(2,2-dimethyl-
propanoate].
These different mechanisms suggest that the two types of
reactions might have different features, and indeed at this early
pointthisseemstobethecase. Thetworeactionsgivecomparable
yields with unsubstituted and α-aryl-substituted diazoacetates. In
contrast, the previous Rh-catalysis method looks superior for
electron-poor diazoesters (much better yields with diazomalo-
nates, for example) while the boryl iodide catalysis method looks
superior for 2-alkyl-subsituted diazoacetates. Building on this
feature, we have produced a number of α-NHC-boryl esters with
amino acid side chains in the α-position. This paves the way for
study of such molecules as analogs of amino acids where the
unusual, electron-donating NHC-boryl group replaces the usual,
electron-withdrawing amino group. Many boron analogs of
amino acids exist, but typically the boron functionality replaces
either the carboxy carbon or the α-carbon of the amino acid.16
Central to the success of this NHC-boryl iodide catalyzed
reactionistheabilityofNHC-boranestodonatehydridetoNHC-
boryl iodides and related borenium ion equivalents. This is also a
key step in catalyzed hydroboration reactions.11 The upshot is
that while NHC-boranes do not react like trivalent boranes, such
“borane-like” reactivity can be expressed with a catalyst that either
is a borenium ion or reacts like a borenium ion.9b−d,11 In turn,
reactions of borenium ions loosely resemble those of boranes. For
(5) (a) Fink, J.; Regitz, M. Synthesis 1985, 1985, 569. (b) Bohshar, M.;
̈
Fink, J.; Heydt, H.; Wagner, O.; Regitz, M. In Organic Nitrogen
Compounds with a C,N-Double Bond, 4th ed.; Klamann, D., Hagemann,
H., Eds.; Georg Thieme Verlag: Stuttgart, 1990; Vol. E14b, pp 961−
1371. (c) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (d) Ford,
A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A.
Chem. Rev. 2015, 115, 9981.
(6) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. - Eur. J. 2003, 9,
4068.
(7) Li, H.; Zhang, Y.; Wang, J. Synthesis 2013, 45, 3090.
(8) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. Chem. Rev. 2012, 112,
4246.
(9) (a) Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.;
Laco
Boussonnier
̂
te, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072. (b) Pan, X.;
e, A.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 14433.
̀
(c) McGough, J. S.; Butler, S. M.; Cade, I. A.; Ingleson, M. J. Chem. Sci.
2016, 7, 3384. (d) Ingleson, M.; McGough, J.; Cid, J. Chem. Eur. J. 2017,
(10) (a) Huang, L.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 8892.
(b) Takamura, N.; Mizoguchi, T.; Koga, K.; Yamada, S. Tetrahedron
1975, 31, 227. (c) Tang, Y.; Chen, Q.; Liu, X.; Wang, G.; Lin, L.; Feng, X.
Angew. Chem., Int. Ed. 2015, 54, 9512.
(11) (a) Karatjas, A. G.; Vedejs, E. J. Org. Chem. 2008, 73, 9508.
(b) Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, 133, 20056.
(c) Prokofjevs, A.;Boussonnier
D. P.; Vedejs, E. J. Am. Chem. Soc. 2012, 134, 12281.
(12) Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat, E.; Curran, D.
P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacote, E. Angew. Chem.,
Int. Ed. 2010, 49, 9166.
̀ ̂
e, A.;Li, L.;Bonin, H.;Lacote, E.;Curran,
+
example, we can say that NHC−BH2I resembles NHC−BH2
which in turn resembles BH3. This is a crude analogy to be sure,
but perhaps the deep knowledge of borane chemistry can be
tapped to discover new catalytic reactions of boryl iodides and
related molecules. If so, then NHC-boranes could become
especially valuable since they could exhibit either their owninnate
reactivity or borane-like reactivity, depending on conditions.
́
̂
(13) Variants include initial N-borylation (rather than C-borylation)
followed by collapse with loss of N2, or direct (bimolecular) hydride
transfer of NHC−BH3 to 19.
(14) Boussonnier
2013, 32, 7445.
̀
e, A.;Pan, X.; Geib, S. J.;Curran, D. P. Organometallics
ASSOCIATED CONTENT
(15) Unfortunately, the experiment also rules out isotope effect and
doubling labeling experiments because H/D exchange will occur.
(16) (a) Spielvogel, B. F. Phosphorus, Sulfur SiliconRelat. Elem. 1994, 87,
267. (b) Dembitsky, V. M.; Srebnik, M. In Amino Acids, Peptides and
Proteins in Organic Chemistry; Hughes, A. B., Ed.; Wiley-VCH:
Weinheim, 2009; Vol. 2, pp 145−188. (c) Smoum, R.; Rubinstein, A.;
Dembitsky, V. M.; Srebnik, M. Chem. Rev. 2012, 112, 4156. (d) Kinder,
D. H.; Katzenellenbogen, J. A. J. Med. Chem. 1985, 28, 1917.
■
S
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
Experimental details; characterization data; spectra (PDF)
D
Org. Lett. XXXX, XXX, XXX−XXX