Please do not adjust margins
RSC Advances
Page 4 of 5
DOI: 10.1039/C5RA16546F
RSC ADVANCES
COMMUNICATION
elements. The DFT calculation shows that between 4h and 4hʹ, 4h is
more stable by 0.21 KJ/mol of energy and hence they were obtained
in almost equimolar ratio (4h:4hʹ≈1.15:1 from NMR data). Between
4i and 4iʹ, 4i is more stable only by 0.1 KJ/mol and thus they were
also obtained in equimolar ratio (4i:4iʹ≈1.04:1from NMR data).
Again, between 4j and 4jʹ, 4j is more stable by 6.67 KJ/mol of
energy and hence 4j was obtained as the major product
(4j:4jʹ≈1.75:1from NMR data). Thus the DFT calculation supports
the results obtained experimentally. The results thus obtained also
stand consistent with the regiochemical consequences reported by
Negishi et al. in 1993.6c
Acknowledgement
M.G. thanks CSIR, New Delhi for the fellowship. The DST, India is
also thanked for providing funds for the project and creating 200 and
600 MHz NMR facility under the IRPHA programme.
Notes and references
1 (a) R. Karmakar, P. Pahari and D. Mal, Chem. Rev., 2014, 114,
6213.(b) K. Dorell, M. A. Cohen, S. S. Huprikar, J. M. Gorman and
M. Jones, Psychosomatics, 2005, 46, 91. (c) T. Giridhar, G.
Srinivasulu and K. S. Rao, US 2011/ 0092719 A1, 2011. (d) J. K.
Harper, A. M. Arif, E. J. Ford, G. A. Strobel, J. A. Porco Jr., D. P.
Tomer, K. L. Oneill, E. M. Heider and D. M. Grant, Tetrahedron,
2003, 59, 2471. (e) U. Holler, J. B. Gloer and D. T. Wicklow, J. Nat.
Prod., 2002, 65, 876. (f) D. Shi, X. Fan, L. Han, F. Xu and Z. Yuan,
Faming Zhuanli Shenqing Gongkai Shuomingshu 2008, CN
101283998 A 20081015. (g) B. Gozler, T. Gozler and M. Shamma,
Tetrahedron, 1983, 39, 577. (h) Z. P. Xie, H. Y. Zhang, F. C. Li, B.
Liu, S. X. Yang, H. P. Wang, Y. Pu, Y. Chen and S. Qin, Chin.
Chem. Lett., 2012, 23, 941.
To explain mechanistically, it would be rationalized that Pd(II) is
initially reduced by PPh3 to Pd(0) which enters the catalytic cycle by
oxidative addition to the sp2ꢀCꢀBr bond of the bromoenyne 2a
leading to the formation of the alkenylpalladium intermediate A.
This intermediate then undergoes intramolecular carbopalladation to
the triple bond forming a “living” alkenylpalladium intermediate B.
Carbopalladation of diphenylactylene 3a to B furnishes intermediate
C which is then converted to the desired product 4a either via D (6ꢀ
endoꢀtrig carbopalladation) or via E (6πꢀelectrocyclization)followed
by βꢀdehydropalladation sequence.6b,10
2 (a) J. F. DeBernardis, D. L. Arendsen, J. J. Kyncl and D. J.
Kerkman, J. Med. Chem., 1987, 30, 178. (b) H. Feichtinger and H.
Linden, (A.ꢀG. Ruhrchemie), U.S. Patent US31, 76, 024, 1965;
Chem. Abstr 1965, 62, 16192. (c) D. D. Phillips and S. B. Soloway
(Shell Oil Co.) U.S. Patent 30, 36, 092,1962; Chem. Abstr. 1962, 57,
13724.
Br
Pd (II)
Pd(0)
O
HBr
PPh3+Cs2CO3
2a
Cs2CO3
H-Pd-Br
O
PdBr
O
4a
A
3 (a) R. Rodrigo, Tetrahedron, 1988, 44, 2093. (b) D. Garcia, F.
Foubelo and M. Yus, Tetrahedron 2008, 64, 4275 (c) A. Lifshitz, A.
Suslensky and C. Tamburu, J. Phys. Chem. A, 2001, 105, 3148. (c)
T.ꢀY. Yuen, S.ꢀH. Yang and M. A. Brimble, Angew. Chem. Int. Ed.,
2011, 50, 8350. (d) S. E. Denmark, C. S. Regens and T. Kobayashi,
J. Am. Chem. Soc., 2007, 129, 2774.
or
H
O
O
PdBr
PdBr
H
E
D
BrPd
O
6
π
-electrocyclization
B
6-endo-trig
carbopalladation
4 (a) Y. Shibata and K. Tanaka, Synthesis, 2012, 44, 323 references
therein. (b) B. Panda and T. K. Sarkar, Tetrahedron Lett., 2008, 49,
6701. (c) Z. Chai, Z.ꢀF. Xie, X.ꢀY. Liu, G. Zhao and J.ꢀD. Wang, J.
Org. Chem., 2008, 73, 2947. (d) L. Lu, X.ꢀY. Liu, X.ꢀZ. Shu, K.
Yang, K.ꢀG. Ji, and Y.ꢀM. Liang, J. Org. Chem., 2009, 74, 474. (d)
J. Das, R. Mukherjee and A. Basak, J. Org. Chem., 2014, 79, 3789.
(e) P. Novak, R. Pohl, M. Kotora, and M. Hocek, Org. Lett., 2006, 8,
2051. (f) N. D. Ca, F. Campanini, B. Gabriele, G. Salerno, C.
Massera and M. Costa, Adv. Synth. Catal., 2009, 351, 2423. (g) B.
V. S. Reddy, S. Jalal, P. Borkar, J. S. Yadav, P. G. Reddy and A. V.
S. Sarma Tetrahedron Lett., 2013, 54, 1519. (h) B. MartinꢀMatute.,
C. Nevado, D. J. Cárdenas and A. M. Echavarren, J. Am. Chem.
Soc., 2003, 125, 5757.
O
PdBr
C
3a
Scheme 1. Plausible mechanism for the formation of 4,5,6-Triphenyl-1,3-dihydroisobenzofurans
Conclusions
In summary, we have developed an easy access to highly substituted
1,3ꢀdihydroisobenzofurans using domino carbopalladation of
bromoenynes and internal alkynes. Our methodology is
advantageous with respect to good yield and substrate versatility.
Moreover, the starting materials are readily accessible. Hope this
methodology may find successful application in the construction of
phthalanꢀcontaining natural products and also help in materials,
pharmaceutical as well as in industrial research.
5 (a) I. Coric, J. H. Kim, T. Vlaar, M. Patil, W. Thiel and B. List,
Angew. Chem. Int. Ed., 2013, 52, 3490. (b) J. M. Robinson, T.
Sakai, K. Okano, T. Kitawaki and R. L. Danheiser, J. Am. Chem.
Soc., 2010, 132, 11039. (c) M. Guiso, A. Betrow and C. Marra Eur.
J. Org. Chem., 2008, 1967. (d) V. Capriati, S. Florio, R. Luisi, F. M.
Perna and A. Salomone, J. Org. Chem., 2006, 71, 3984. (e) B.
Ravindra, B. G. Das and P. Ghorai, Org. Lett., 2014, 16, 5580. (f) F.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins