(13) Lennie, A. R.; Redfern, S. A. T.; Schofield, P. F.; Vaughan, D. J.
Mineralogical Magazine 1995, 59, 677-683.
(14) Lennie, A. R.; Vaughan, D. J. In Mineral Spectroscopy: A Tribute
to Roger G. Burns; Dyar, M. D., McCammon, C., Schaefer, M.
W., Eds.; The Geochemical Society: Special Publication No. 5,
St. Louis, MO, 1996; pp 117-131.
(15) Rickard, D. T. Stockholm Contr. Geol. 1969, 26, 67-95.
(16) Lipczynska-Kochany, E.; Harms, S.; Milburn, R.; Sprah, G.;
Nadarajah, N. Chemosphere 1994, 29, 1477-1489.
(17) Sivavec, T. M.; Horney, D. P.; Baghel, S. S. Emerging Technologies
in Hazardous Waste Management VII; American Chemical
Society Special Symposium, September 17-20, 1995, Atlanta,
GA; American Chemical Society: Washington, DC, 1995; pp 42-
45.
Mackinawite is a metallic conductor (78) with the conductivity
or delocalized electrons in the plane of mackinawite layers
(8). Consequently, orientation of mackinawite layers per-
pendicular to the iron surface, as was observed at pH 7 (10),
could facilitate conduction of electrons from the iron metal
to an adsorbed compound such as TCE, resulting in increased
rates of TCE transformation. Second, the increased rate of
TCE transformation upon treatment of iron metal with NaHS
could be explained by reaction of precipitated mackinawite
deposits with TCE, since FeS is significantly more reactive
with TCE than iron metal on a surface area normalized basis
(21).
Unlike experiments with FeS alone, where cis-DCE and
acetylene were the sole reaction products detected in
significant quantities, significant quantities of 1,1-DCE,
ethylene, and ethane were also detected in the transformation
of TCE by sulfide-treated iron metal, precluding calculation
of branching ratios. The results illustrated in Figure 5,
however, indicate that treatment of iron metal with bisulfide
may hold promise as an effective means to increase the
reactivity of iron metal prior to or after installation in a
subsurface reactive barrier. The results shown in Figure 5
also suggest that encouraging the growth of sulfate-reducing
bacteria in the vicinity of zerovalent iron subsurface walls
may be an effective way to enhance the long-term reactive
stability of these walls through the formation of FeS surface
coatings or deposits on iron metal or through reactivation
of an aged and oxidized iron metal surface to form FeS.
(18) Sivavec, T. M. U.S. Patent Number 5,447,639, 1995.
(19) Sivavec, T. M.; Horney, D. P.; Baghel, S. S. U.S. Patent Number
5,575,927, 1996.
(20) Assaf, N.; Lin, K.-Y.; Manony, J. Preprints of Papers Presented at
the 213th ACS National Meeting, April 13-17, 1997, San
Francisco, CA; American Chemical Society: Washington, DC,
1997; Vol. 37 (1), pp 194-195.
(21) Sivavec, T. M.; Horney, D. P. Preprints of Papers Presented at
the 213th ACS National Meeting, April 13-17, 1997, San
Francisco, CA; American Chemical Society: Washington, DC,
1997; Vol. 37 (1), pp 115-117.
(22) Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 1998, 32, 1276-
1284.
(23) Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 1999, 33, 2021-
2027.
(24) Devlin, J. F.; Mu¨ ller, D. Environ. Sci. Technol. 1999, 33, 1021-
1027.
(25) Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 2000, 34, 422-
429.
(26) Kenneke, J. F.; Weber, E. J. Preprints of Papers Presented at the
220th ACS National Meeting, August 20-24, 2000, Washington,
DC; American Chemical Society: Washington, DC, 2000; Vol.
40 (2), pp 313-315.
(27) Hassan, S. M. Chemosphere 2000, 40, 1357-1363.
(28) Hassan, S. M.; Wolfe, N. L.; Cippolone, M. G. Preprints of Papers
Presented at the 209th ACS National Meeting, April 2-7, 1995,
Anaheim, CA; American Chemical Society: Washington, DC,
1995; Vol. 35 (1), pp 735-737.
(29) Harms, S.; Lipczynska-Kochany, E.; Milburn, R.; Sprah, G.;
Nadarajah, N. Preprints of Papers Presented at the 209th ACS
National Meeting, April 2-7, 1995, Anaheim, CA; American
Chemical Society: Washington, DC, 1995; Vol. 35 (1), pp 292-
294.
Acknowledgments
We thank Tom Yavaraski for invaluable technical assistance
in the laboratory and three anonymous reviewers for
comments that greatly improved the manuscript. Funding
was provided by the U.S. Environmental Protection Agency,
U.S. Department of Energy, National Science Foundation,
and Office of Naval Research Joint Program on Bioreme-
diation (EPA-G-R-825958). The content of this publication
does not necessarily reflect the views of these agencies.
Supporting Information Available
(30) Uda, M. American Mineralogist 1965, 50, 1487-1489.
(31) Sweeney, R. E.; Kaplan, I. R. Econ. Geol. 1973, 68, 618-634.
(32) Taylor, P.; Rummery, T. E.; Owen, D. G. J. Inorg. Nucl. Chem.
1979, 41, 596-599.
(33) Rickard, D. T. Am. J. Sci. 1975, 275, 636-652.
(34) Rickard, D. T. Stockholm Contr. Geol. 1969, 26, 49-66.
(35) Doyle, R. W. Am J. Sci. 1968, 266, 980-994.
(36) Emerson, S. Geochim. Cosmochim. Acta 1976, 40, 925-934.
(37) Davison, W. Aquatic Sciences 1991, 53, 309-321.
(38) Skinner, B. J.; Erd, R. C.; Grimaldi, F. S. American Mineralogist
1964, 49, 543-555.
(39) Campbell, T. J.; Burris, D. R.; Roberts, A. L.; Wells, J. R. Environ.
Toxicol. Chem. 1997, 16, 625-630.
(40) Arnold, W. A.; Roberts, A. L. Environ. Sci. Technol. 2000, 34,
1794-1805.
(41) Tezuka, M.; Yajima, T. Denki Kagaku Oyobi Kogyo Butsuri Kagaku
1991, 59, 517-518.
(42) Nagaoka, T.; Yamashita, J.; Kaneda, M.; Ogura, K. J. Electroanal.
Chem. 1992, 355, 187-195.
(43) Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L.
Environ. Sci. Technol. 1996, 30, 3047-3052.
(44) Roberts, A. L.; Totten, L. A.; Arnold, W. A.; Burris, D. R.; Campbell,
T. J. Environ. Sci. Technol. 1996, 30, 2654-2659.
(45) Blo¨ chl, E.; Keller, M.; Wa¨chtersha¨user, G.; Stetter, K. O. Proc.
Natl. Acad. Sci. U.S.A. 1992, 89, 8117-8120.
(46) Osipov, A. M.; Boiko, Z. V.; Afanas’eva, L. N.; Grishchuk, S. V.
Solid Fuel Chemistry 1994, 28 (2), 9-12.
(47) Lee, W.; Batchelor, B. Preprints of Papers Presented at the 220th
ACS National Meeting, August 20-24, 2000, Washington, DC;
American Chemical Society: Washington, DC, 2000; Vol. 40 (2),
pp 338-340.
Methods used to calculate the 95% confidence intervals
reported in Tables 1 and 2. This material is available free of
charge via the Internet at http:/ / pubs.acs.org.
Literature Cited
(1) U.S. Environmental Protection Agency. Field Applications of In
Situ Remediation Technologies: Permeable Reactive Barriers;
EPA 542-R-99-002; Office of Solid Waste and Emergency
Response: Washington, DC, 1999.
(2) U.S. Environmental Protection Agency. Common Chemicals
found at Superfund Sites; EPA 540/ R-94/ 044; Office of Emer-
gency and Remedial Response: Washington, DC, 1994; as up-
index/ htm#generalpublications, April 1998.
(3) Meyer, F. H.; Riggs, O. L.; McGlasson, R. L.; Sudbury, J. D.
Corrosion 1958, 14 (2), 69-75.
(4) Berner, R. A. Science 1962, 137, 669.
(5) Berner, R. A. J. Geol. 1964, 72, 293-306.
(6) Berner, R. A. Am. J. Sci. 1967, 265, 773-785.
(7) Takeno, S.; Zoˆ ka, H.; Nihara, T. Am. Mineral. 1970, 55, 1639-
1649.
(8) Vaughan, D. J.; Ridout, M. S. J. Inorg. Nucl. Chem. 1971, 33,
741-746.
(9) Pankow, J. F.; Morgan, J. J. Environ. Sci. Technol. 1979, 13, 1248-
1255.
(10) Shoesmith, D. W.; Taylor, P.; Bailey, G.; Owen, D. G. J.
Electrochem. Soc. 1980, 127, 1007-1015.
(11) Wikjord, A. G.; Rummery, T. E.; Doern, F. E.; Owen, D. G.
Corrosion Sci. 1980, 20, 651-671.
(12) Murowchick, J. B.; Barnes, H. L. Am. Mineralogist 1986, 71, 1243-
1246.
(48) Weerasooriya, R.; Dharmasena, B. Chemosphere 2001, 42, 389-
396.
(49) Sweeney, R. E.; Kaplan, I. R. Econ. Geol. 1973, 68, 618-634.
9
3 8 9 0 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 35, NO. 19, 2001