Organic Letters
Letter
Figure 3. Proposed mechanism.
mechanism, as we failed to trap the mass of III (SI, p 6). Later,
intermediate II on air oxidation generates desired tetracyclic
compound 4. In the case of the metal catalyzed reaction (path
B), intermediate A on reaction with 3 produces the Betti base,
which generates intermediate ammoniumyl radical cation B
through a single electron transfer (SET) to CuII. Radical B on
successive loss of an H radical (or a combination of electron
and H+) led to an iminium salt6,8a that is quite stabilized by the
adjacent 2-oxo group. The iminium intermediate ultimately on
cyclization undergoes hydrolysis to 5. The generation of 5
through the Betti base was well supported by LC-ESI-MS mass
analysis (SI, p 6). In addition, generation of 5 from 4 (path C)
can be predicted by involvement of CuII in the ring opening
and deamination reaction.8b
In conclusion, we have outlined a new strategy for the
generation of tetrahydrofuro[3,2-d]oxazoles 4 and naptho-
furanones 5 through 2-oxo directed nontraditional reactions. In
general, all the reactions were performed without the aid of
external additives or co-oxidants. The most imperative feature
of napthotetrahydrofuro[3,2-d]oxazoles synthesis can be the
diastereoselectivity. Further detailed mechanistic studies and
their application with other amines and phenols and biological
activities will be disclosed in due course.
REFERENCES
■
(1) (a) Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Chem. Rev. 2013, 113,
2958−3043. (b) Battini, N.; Padala, A. K.; Mupparapu, N.;
Vishwakarma, R. A.; Ahmed, Q. N. RSC Adv. 2014, 4, 26258−
26263. (c) Mupparapu, N.; Battini, N.; Battula, S.; Khan, S.;
Vishwakarma, R. A.; Ahmed, Q. N. Chem.Eur. J. 2015, 21, 2954−
2960. (d) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta,
A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152−
1155.
(2) (a) Williams, P. G.; Asolkar, R. N.; Kondratyuk, T.; Pezzuto, J.
M.; Jensen, P. R.; Fenical, W. J. Nat. Prod. 2007, 70, 83−88. (b) Cai,
Y.; Ling, C.-C.; Bundle, D. R. J. Org. Chem. 2009, 74, 580−589.
(3) Cai, Y.; Ling, C.-C.; Bundle, D. R. Org. Lett. 2005, 7, 4021−4024.
(4) Charrier, J.-D.; Durrant, S. J.; Studley, J.; Lawes, L.; Weber, P.
Bioorg. Med. Chem. Lett. 2012, 22, 485−488.
(5) Gang Li, L. L.; Huang, H.; Yin, D. Org. Biomol. Chem. 2015, 13,
4418−4421.
(6) (a) Deb, M. L.; Dey, S. S.; Bento, I.; Barros, M. T.; Maycock, C.
D. Angew. Chem. Int. Ed 2013, 52, 9791−9795. (b) Mahato, S.; Haldar,
S.; Jana, C. K. Chem. Commun. 2014, 50, 332−334.
(7) (a) Mikami, K.; Shimizu, M. chem.Rev. 1992, 92, 1021−1050.
(b) Kidwai, M.; Chauhan, R. Asian J. Org. Chem. 2013, 2, 395−398.
(8) (a) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.;
Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068−12073. (b) Tang, R.-
Y.; Guo, X.-K.; Xiang, J.-N.; Li, J.-H. J. Org. Chem. 2013, 78, 11163−
11171.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, analytical data for products, NMR
spectra of products. The Supporting Information is available
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
N.B. and S.B. thank UGC and CSIR. The authors thank the
analytical department of IIIM. Finally, we are grateful to the
online network project BSC-0108, for funding this work. IIIM
Communication No. IIIM/1804/2015.
D
Org. Lett. XXXX, XXX, XXX−XXX