C O M M U N I C A T I O N S
Table 1. Ethenolysis of Methyl Oleate (MO)
entry
catalyst
equiv
P (atm)
time (h)
% conva
% selectb
% yieldc
TONd
1
2
3
4
5
6
7
8
Mo(NAr)(CHCMe2Ph)(Me2pyr)(OBitet) (1a)
1a
500
1000
5000
5000
500
500
500
500
50
4
4
4
10
4
4
4
4
4
4
1
20
15 or 48
15
2
20
1
18
1
1
17
18
94
80
58
95
83
87
86
96
0
>99
>99
>99
>99
76
86
92
98
0
0
94
80
58
95
63
75
79
94
0
470
800
2900
4750
315
325
395
470
0
1a
1a
Mo(NAr)(CHCMe2Ph)[OCMe(CF3)2]2
Mo(NAr)(CHCMe2Ph)(Me2pyr)(TPP)
Mo(NAr)(CHCMe2Ph)(Me2pyr)(OSiPh3)
Mo(NAd)(CHCMe2Ph)(Me2pyr)(OBitet) (1b)
Mo(NAd)(CHCMe2Ph)(Pyr)(HIPTO) (2a)
Mo(NAd)(CHCMe2Ph)(Me2pyr)(TPP)
W(NAr)(C3H6)(Me2pyr)(OBitet)
W(NAr)(C3H6)(Me2pyr)(OBitet) (50 °C)
9
10
11
12
50
500
500
0
48
62
0
48
62
0
240
310
4
4
>99
>99
a Conversion ) 100 - [(final moles of MO) × 100/(initial moles of MO)]. b Selectivity ) (1D + M9D) × 100/(total products). c Yield ) (1D or
M9D) × 100/(initial moles of MO). d TON ) % yield[(moles of MO)/(moles of catalyst)].
reason why tungsten is slower than molybdenum is that tungsta-
cyclobutanes release ethylene more slowly than molybdacyclobu-
tanes.5 Another possibility is that the ester carbonyl binds to
tungsten more strongly than it does to molybdenum and inhibits
turnover to a more significant degree.
Ethenolysis of 30 000 equiv of cyclooctene to give 1,9-decadiene
with 1a as the catalyst proceeded with a TON of 22 500 (75% yield)
at 20 atm (Table 2). Initiation of polymerization of cyclooctene
with 1a is slow, so little 1a is consumed before it reacts with
ethylene to yield Mo(NAr)(CH2)(Me2Pyr)(OBitet), and ethenolysis
then proceeds rapidly. At 1 atm of ethylene in an NMR scale
reaction, poly(cyclooctene) can be observed, but the amount of
polymer decreases substantially upon addition of more ethylene.
Essentially the same result as shown in entry 5 of Table 2 was
observed when commercial 99.995% ethylene was employed.
Therefore any potentially harmful impurities in the 99.5% ethylene
(e.g., water or oxygen) do not limit the TON.
successful. The number of possible catalyst variations is large, so
we expect that fine-tuning ultimately should lead to even more
efficient catalysts for ethenolysis.
Ethenolysis of methyl oleate by ruthenium catalysts has been
studied extensively.7 Conversion to products at 10 atm of ethylene
usually is incomplete and/or unselective to 1D and M9D, and no
efficient reactions have been reported at room temperature. In the
most successful case reported here, routinely purified methyl oleate
can be converted virtually completely to 1D and M9D at room
temperature and 10 atm of ethylene.
Acknowledgment. This research was funded by the National
Science Foundation (CHE-0554734 to R.R.S.). We thank Materia,
Inc. for a gift of purified methyl oleate and Margaret Flook and
Annie Jiang for gifts of catalyst samples.
Supporting Information Available: Experimental details for the
synthesis of all compounds and the X-ray structural study. Supporting
Table 2. Ethenolysis of Cyclooctene with 1a
References
entry
equiv
P (atm)
T (h)
% conv
% yld
TON
1
2
3
4
5
5000
10 000
10 000
20 000
30 000
10
10
20
20
20
16
20
20
16
20
98
98
93
88
75
90
80
93
88
75
4500
8000
9300
17 600
22 500
(1) (a) Hock, A. S.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2006,
128, 16373. (b) Singh, R.; Schrock, R. R.; Mu¨ller, P.; Hoveyda, A. H.
J. Am. Chem. Soc. 2007, 129, 12654. (c) Marinescu, S. C.; Singh, R.; Hock,
A. S.; Wampler, K. M.; Schrock, R. R.; Mu¨ller, P. Organometallics 2008,
27, 6570. (d) Schrock, R. R. Chem. ReV. 2009, 109, online 3/13. (e) Two
Mo(NAr)(CHCMe2Ph)(pyrrolide)2 complexes are sold by Strem Chemicals,
Inc.
(2) (a) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda,
A. H. Nature 2008, 456, 933. (b) Sattely, E. S.; Meek, S. J.; Malcolmson,
S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943.
(3) Ibrahem, I.; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2009, 131, 3844.
Ethenolysis of 5000 equiv of cyclopentene at 20 atm of 99.5%
ethylene led to an 84% conversion to 1,6-heptadiene in 79% yield in
15 h (TON 3950). In a run employing 10 000 equiv of cyclopentene
and 99.995% ethylene, the yield is 58% and TON 5800 in 20 h.
It currently is not known why Mo(NAr)(CH2)(Me2Pyr)(OBitet)
methylene species are relatively long-lived. Although the main mode
of methylidene decomposition is bimolecular coupling to give
ethylene, some evidence in the literature suggests that ethylene
promotes rearrangement of a metallacyclobutane to an olefin in
certain circumstances.10 If the latter mode of decomposition is
operating in the ethenolysis reactions described here, further
engineering of the catalyst may sterically prevent formation of a six-
coordinate ethylene adduct that leads to metallacycle rearrangement.
The results in Table 1 suggest that a key to high selectivity is
relatively slow productive metathesis to yield 1,18-dimethyl-9-
octadecenedioate and 9-octadecene (for steric reasons), i.e., slow
reaction between a substituted alkylidene and 1D, M9D, or methyl
oleate (the slowest) under the conditions employed. We have no
reason to expect that the turnover numbers have been maximized
with 1a. The chirality of the OBitet ligand seems unlikely to have
much, if anything, to do with its efficiency as an ethenolysis catalyst,
since catalysts such as those shown in entries 6 and 7 are relatively
(4) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Mu¨ller, P.; Hoveyda, A. H.
J. Am. Chem. Soc. 2009, 131, 7962.
(5) Jiang, A. J.; Simpson, J. H.; Mu¨ller, P.; Schrock, R. R. J. Am. Chem. Soc.
2009, 131, 7770.
(6) Marinescu, S. C.; Schrock, R. R.; Li, B.; Hoveyda, A. H. J. Am. Chem.
Soc. 2009, 131, 58.
(7) (a) Burdett, K. A.; Harris, L. D.; Margl, P.; Maughon, B. R.; Mokhtar-
Zadeh, T.; Saucier, P. C.; Wasserman, E. P. Organometallics 2004, 23,
2027. (b) Schrodi, Y.; Ung, T.; Vargas, A.; Mkrtumyan, G.; Lee, C. W.;
Champagne, T. M.; Pederson, R. L.; Hong, S. H. Clean: Soil, Air, Water
2008, 36, 669. (c) Bei, X.; Allen, D. P.; Pederson, R. L. Pharm. Technol.
2008, s18. (d) Anderson, D. R.; Ung, T.; Mkrtumyan, G.; Bertrand, G.;
Grubbs, R. H.; Schrodi, Y. Organometallics 2008, 27, 563. (e) Corma, A.;
Iborra, S.; Velty, A. Chem. ReV. 2007, 107, 2411. (f) Forman, G. S.;
McConnell, A. E.; Hanton, M. J.; Slawin, A. M. Z.; Tooze, R. P.;
vanRensburg, W. J.; Meyer, W. H.; Dwyer, C.; Kirk, M. M.; Serfontein,
D. W. Organometallics 2004, 23, 4824.
(8) (a) Feldman, J.; Davis, W. M.; Thomas, J. K.; Schrock, R. R. Organome-
tallics 1990, 9, 2535. (b) Feldman, J.; Schrock, R. R. Prog. Inorg. Chem.
1991, 39, 1.
(9) Bazan, G. C.; Oskam, J. H.; Cho, H.-N.; Park, L. Y.; Schrock, R. R. J. Am.
Chem. Soc. 1991, 113, 6899.
(10) (a) Tsang, W. C. P.; Schrock, R. R.; Hoveyda, A. H. Organometallics 2001,
20, 5658. (b) Leduc, A.-M.; Salameh, A.; Soulivong, D.; Chabanas, M.;
Basset, J.-M.; Coperet, C.; Solans-Monfort, X.; Clot, E.; Eisenstein, O.;
Boehm, V. P. W.; Roeper, M. J. Am. Chem. Soc. 2008, 130, 6288.
JA904786Y
9
J. AM. CHEM. SOC. VOL. 131, NO. 31, 2009 10841