68
P. Mignon et al. / Journal of Molecular Catalysis A: Chemical 371 (2013) 63–69
Table 3
Acknowledgements
Energies and thermodynamic values of reduction products of compound
(kcal/mol).
3
H.C. and P.M. thank the Centre Informatique National de
l’Enseignement Supérieur (CINES) and Grand Equipement National
de Calcul Intensif (GENCI) for computer resources allocation,
project: cpt2130.
M.T. thanks the Ministère Franc¸ ais de l’Enseignement Supérieur
et de la Recherche and P.B. thanks, the “Association pour la
Recherche sur le Cancer” and the “Cluster de Recherche Chimie de
la Région Rhône-Alpes.”
From compound 3
ꢀE
ꢀH
ꢀG
4
−21.7
−37.2
−42.7
−78.3
−119.6
−15.3
−25.1
−30.4
−54.0
−76.4
−7.3
14
13
15
16
−8.5
−13.7
−20.2
−14.4
because of the presence of pyrrolidine substituent. As such, com-
pound 10 should not be formed. In that case the hydrogenation
mechanism occurs directly and only on the external rings, following
the pathway described in Scheme 2.
Appendix A. Supplementary data
Supplementary data associated with this article can be
For compound 3, only compound 4 is observed experimentally
while 13 is not. However 4 is observed to be rapidly re-oxidized
to 3 at normal conditions. This shows that 4 is not stable under
atmospheric conditions although it is showed theoretically to be
stable and its formation favourable. For 13, as compared to 4 it is
an external ring which is hydrogenated. Although it is more stable
and thermodynamically favourable, one might imagine that 13 is
also rapidly rearranged to 4 under atmospheric conditions and then
back to 3. However these hypotheses cannot be answered rigor-
ously from the present results. Additional work would be necessary
in order to assess whether short-living 13 is formed or not, and in
that case if it is very rapidly re-oxidized to 3.
References
[1] P. Belmont, I. Dorange, Expert Opin. Ther. Pat. 18 (2008) 1211.
[2] P. Belmont, J. Bosson, T. Godet, M. Tiano, Anticancer Agents Med. Chem. 7 (2007)
139.
[3] L.R. Kelland, Eur. J. Cancer 41 (2005) 971.
[4] R. Martinez, L. Chacon-Garcia, Curr. Med. Chem. 12 (2005) 127.
[5] M.D. Pujol, M. Romero, I. Sanchez, Curr. Med. Chem. – Anticancer Agents 5
(2005) 215.
[6] M. Demeunynck, Expert Opin. Ther. Pat. 14 (2004) 55.
[7] W.A. Denny, Curr. Med. Chem. 9 (2002) 1655.
[8] J. Chiron, J.P. Galy, Synthesis (2004) 313.
[9] F. Fache, Synlett (2004) 2827.
[10] F. Fache, S. Lehuede, M. Lemaire, Tetrahedron Lett. 36 (1995) 885.
[11] (a) F. Fache, O. Piva, Synlett (2004) 1294;
(b) D. Clarisse, B. Fenet, F. Fache, Org. Biomol. Chem. 10 (2012) 6587.
[12] F. Rouhart, Rev. Med. Interne 16 (1995) 860.
[13] T. Darreh-Shori, H. Soininen, Curr. Alzheimer Res. 7 (2010) 67.
[14] M. Ouberai, K. Brannstrom, M. Vestling, A. Olofsson, P. Dumy, S. Chierici, J.
Garcia, Org. Biomol. Chem. 9 (2011) 1140.
4. Conclusion
This study combining experimental and theoretical techniques
aimed to understand the hydrogenation reduction pathway of acri-
dine derivatives over an Rh/Al2O3 catalyst. In our conditions, the
unsubstituted acridine is totally reduced. As a function of time,
two intermediates have been identified. Reduction pathway can
be explained by energy calculations and steric hindrance. In com-
parison, for substituted acridines, the reduction is stopped before
the hydrogenation of the aromatic cycle carrying the pyrrolidine
substituent. For the acridine molecule substituted at the central
ring, the energetics indicate that the last hydrogenation of the
central ring is less favourable than for the free acridine, show-
ing that the reaction is much more difficult. This is in line with
the experimental observations. For the acridine substituted at a
lateral ring the energetics, however, do not explain the experimen-
tal observations. From previous theoretical studies it is assumed
that the hydrogenation takes place when the aromatic ring is
chemisorbed on the metal surface. In that sense we expect a
probable hindrance due to the pyrrolidine substituent. For the
acridine substituted at the central ring, it clearly appears that
the pyrrolidine prevents the aromatic carbon of the central ring
to bind the surface. This confirms the experimental observations
and shows that the reduction pathway is somehow different from
that of the free acridine, lateral rings being hydrogenated while
the central ring is not. For the acridine substituted at the lateral
ring, the hindrance due to pyrrolidine substituent only prevents
the hydrogenation of this ring. This however does not explain
the experimental observation. One could argue that the molecule
formed is rapidly re-oxydized at standard conditions, as it is
observed for molecule 4, but further studies are needed to conclude
on that point.
[15] J. Patocka, D. Jun, K. Kuca, Curr. Drug Metab. 9 (2008) 332.
[16] C. Ronco, L. Jean, H. Outaabout, P.Y. Renard, Eur. J. Org. Chem. (2011)
302.
[17] H. Sugimoto, Chem. Biol. Interact. 175 (2008) 204.
[18] V. Tumiatti, A. Minarini, M.L. Bolognesi, A. Milelli, M. Rosini, C. Melchiorre, Curr.
Med. Chem. 17 (2010) 1825.
[19] W. Luo, Y.-P. Li, Y. He, S.-L. Huang, J.-H. Tan, T.-M. Ou, D. Li, L.-Q. Gu, Z.-S. Huang,
Bioorg. Med. Chem. 19 (2011) 763.
[20] T. Kabe, A. Ishihara, W. Qian, Hydrodesulfurization and Hydrodenitrogenation:
Chemistry and Engineering, Wiley-VCH, Weinheim, 1999.
[21] M. Macaud, M. Sevignon, A. Favre-Reguillon, M. Lemaire, E. Schulz, M. Vrinat,
Ind. Eng. Chem. Res. 43 (2004) 7843.
[22] C. Bianchini, A. Meli, F. Vizza, Eur. J. Inorg. Chem. (2001) 43.
[23] K.Y. Sakanishi, M.S. Ohira, I. Mochida, H. Okazaki, M.H. Soeda, Bull. Chem. Soc.
Jpn. 62 (1989) 3994.
[24] G. Radivoy, F. Alonso, M. Yus, Tetrahedron 55 (1999) 14479.
[25] K. Sakanishi, I. Mochida, H. Okazaki, M. Soeda, Chem. Lett. (1990) 319.
[26] K. Kamata, Y. Tominaga, A. Tori-i, T. Thiemann, K. Takahashi, S. Mataka, Hete-
rocycles 57 (2002) 1683.
[27] K. Sakanishi, M. Ohira, I. Mochida, H. Okaaki, M. Soeda, J. Chem. Soc. Perkin
Trans. 2 (1988) 1769.
[28] C. Bianchini, V. Dal Santo, A. Meli, S. Moneti, M. Moreno, W. Oberhauser, R.
Psaro, L. Sordelli, F. Vizza, J. Catal. 213 (2003) 47.
[29] A.F. Borowski, S. Sabo-Etienne, B. Donnadieu, B. Chaudret, Organometallics 22
(2003) 1630.
[30] S.J. Geier, P.A. Chase, D.W. Stephan, Chem. Commun. 46 (2010)
4884.
[31] P.Q. Yuan, B.Q. Wang, Y.M. Ma, H.M. He, Z.M. Cheng, W.K. Yuan, J. Mol. Catal. A:
Chem. 301 (2009) 140.
[32] P.Q. Yuan, B.Q. Wang, Y.M. Ma, H.M. He, Z.M. Cheng, W.K. Yuan, J. Mol. Catal. A:
Chem. 309 (2009) 124.
[33] C. Morin, D. Simon, P. Sautet, Surf. Sci. 600 (2006) 1339.
[34] F. Mittendorfer, C. Thomazeau, P. Raybaud, H. Toulhoat, J. Phys. Chem. B 107
(2003) 12287.
[35] M. Saeys, M.F. Reyniers, M. Neurock, G.B. Marin, J. Phys. Chem. B 107 (2003)
3844.
[36] F. Mittendorfer, J. Hafner, J. Phys. Chem. B 106 (2002) 13299.
[37] P. Belmont, T. Belhadj, Org. Lett. 7 (2005) 1793.
[38] M. Tiano, P. Belmont, J. Org. Chem. 73 (2008) 4101.
[39] E.J. Baerends, J.A., D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter,
L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H.
Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W.
Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, F.E. Harris, P. van den Hoek,
Finally, the combination of an experimental and theoretical
approach of the present study allowed us to understand the reduc-
tion mechanism of acridine 5 and to show that the mechanism is
different for derivative 1.