Published on Web 01/09/2003
Crown-Annelated Oligothiophenes as Model Compounds for
Molecular Actuation
†
,†
†
‡
Bruno Jousselme, Philippe Blanchard,* Eric Levillain, Jacques Delaunay,
‡
§
§
‡
Magali Allain, Pascal Richomme, David Rondeau, Nuria Gallego-Planas, and
,
†
Jean Roncali*
Contribution from Groupe Syst e` mes Conjugu e´ s Lin e´ aires and Ing e´ nierie Mol e´ culaire et
Mat e´ riaux Organiques, UMR CNRS 6501, and SerVice Commun d’Analyses Spectroscopiques,
UniVersit e´ d’Angers, 2 BouleVard LaVoisier, 49045 Angers, France
Abstract: Crown-annelated quater- (4T) and sexithiophenes (6T) with oligooxyethylene chains of various
lengths attached at the 3-positions of the terminal thiophene rings have been synthesized. Analysis of the
1
cation-binding properties of the macrocycles by H NMR and UV-vis spectroscopy reveals the formation
2+
2+
2+
of a 1:1 complex with Ba , Sr , or Pb and shows that cation complexation results in a conformational
transition in the π-conjugated system. Theoretical analysis of this process by density functional methods
predicts that this conformational transition results in a narrowing of the highest occupied-lowest unoccupied
molecular orbital gap of the conjugated system with a decrease of the redox potentials (E0 and E0
)
1 2
associated with the formation of the 4T cation radical and dication. Cyclic voltammetry shows that, depending
0
on the binding constant, the presence of metal cation produces a negative or a positive shift of E
1
while
0
E
2
always shifts negatively. This unusual behavior is discussed in terms of interplay between electrostatic
interactions and conformational changes associated with cation binding.
5
6
Introduction
co-workers, while Gaub and co-workers have investigated a
polymeric system undergoing a single-molecule optomechanical
cycle.
Motion generation at the molecular level by means of
chemical, electrochemical, or photochemical stimulation has
recently become a focus of considerable interest in the general
context of molecular machines.1-6 Stoddart and co-workers1b,2
have developed molecular shuttles in which change of the
oxidation state of a redox system imbedded in a rotaxane induces
Thiophene-based monodisperse π-conjugated oligomers have
much interest as active material in field effects transistors or
7,8
light-emitting diodes. Although these oligomers have also been
considered as molecular wires for molecular electronic devices,9
their possible use in dynamic nanosystems has been scarcely
considered so far. Bulk electrochemical actuators based on the
volume changes associated with the doping/undoping process
1c,3,4
its translocation along a linear axis. Sauvage and co-workers
have synthesized molecular machines and molecular muscles
powered by the modification of the coordination sphere of a
metal involved in rotaxanes containing tetra- and pentacoordi-
nation sites. Photochemically powered molecular machines
undergoing circular motion have been described by Feringa and
10
of conjugated polymers have been known for some time, but
(7) (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. AdV. Mater. 2002, 14, 99.
(
b) Rogers, J. A.; Bao, Z.; Dodabalapur, A.; Crone, B.; Raju, V. R.; Katz,
H. E.; Kuck, V.; Ammundson, K. J.; Drzaic, P. Proc. Natl. Acad. Sci. U.S.A.
001, 98, 4817. (c) Garnier, F. Acc. Chem. Res. 1999, 32, 209. (d) Horowitz,
G. AdV. Mater. 1998, 10, 3. (e) Katz, H. E. J. Mater. Chem. 1997, 7, 369.
f) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet,
2
*
Corresponding authors.
(
†
Groupe Syst e` mes Conjugu e´ s Lin e´ aires.
Ing e´ nierie Mol e´ culaire et Mat e´ riaux Organiques.
Service Commun d’Analyses Spectroscopiques.
B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716. (g) Barbarella,
G.; Zambianchi, M.; Antolini, L.; Ostoja, P.; Maccagnani, P.; Bongini, A.;
Marseglia, E. A.; Tedesco, E.; Gigli, G.; Cingolani, R. J. Am. Chem. Soc.
1999, 121, 8920.
‡
§
(
1) (a) Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing and
Computation; Wiley, New York 1992. (b) Kelly, T. R.; De Silva, H.; Silva,
R. A. Nature 1999, 401, 150. (b) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem.
Res. 1997, 30, 393. (c) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611. (d)
Balzani, V.; Gomez-Lopez, M.; Stoddart, J. F. 31, 405. (e) Koumura, N.;
Zijlstra, R. W.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999,
(8) (a) Geiger, F.; Stoldt, M.; Schweiser, R.; B a¨ uerle, P.; Umbach, E. AdV.
Mater. 1993, 5, 922. (b) Barbarella, G.; Favaretto, L.; Sotgiu, G.;
Zambianchi, P.; Bongini, A.; Arbizzani, C.; Mastragostino, M.; Anni, M.;
Gigli, G.; Cingolani, R. J. Am. Chem. Soc. 2000, 122, 11971. (c) Barbarella,
G.; Favaretto, L.; Sotgiu, G.; Antolini, L.; Gigli, G.; Cingolani, R.; Bongini,
A. Chem. Mater. 2001, 13, 4112.
4
01, 152.
2) Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddardt, J. F. Nature 1994,
69, 133.
3) Livoreil, A.; Dietrich-Buchecker, C. O.; Sauvage, J.-P. J. Am. Chem. Soc.
(
(
(
(
(
(9) (a) Aviram, A. J. Am. Chem. Soc. 1988, 110, 5687. (b) Guay, J.; Diaz, A.;
Wu, R.; Tour, J. M. J. Am. Chem. Soc. 1993, 115, 1869. (c) Wu, R.;
Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org. Chem. 1996, 61, 6906.
(d) Kergueris, C.; Bourgoin, J.-P.; Palacin, S.; Esteve, D.; Urbina, C.;
Magoga, M.; Joachim, C. Phys. ReV. B 1999, 59, 12505. (e) Roncali, J.
Acc. Chem. Res. 2000, 33, 147. (f) Jestin, I.; Fr e` re, P.; Blanchard, P.;
Roncali, J. Angew. Chem., Int. Ed. 1998, 37, 942.(g) Jestin, I.; Fr e` re, P.;
Mercier, N.; Levillain, E.; Sti e´ venard, D.; Roncali, J. J. Am. Chem. Soc.
1998, 120, 8150.
3
1
994, 116, 9399.
4) Jimenez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.; DeCian, A. Angew.
Chem., Int. Ed. 2000, 39, 1295.
5) Koumura, N.; Zijistra, R. W. L.; van Delden, R. A.; Harada, N.; Feringa,
B. L. Nature 1999, 401, 152
6) Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Markus, S.; Gaub, H.
E. Science 2002, 296, 1103.
(10) Baughman, R. H. Synth. Met. 1996, 78, 339.
10.1021/ja026819p CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 1363-1370
9
1363