(NCH3), 60.6 (C-2), 66.4 (C-3), 69.2 (C-5), 108.0 (C-3 indole), 110.6 (C-7
indole), 117.8 (C-4 indole), 119.8 (C-6 indole), 120.0 (CN), 121.6 (C-5
indole), 122.2 (C-3a indole), 134.5 (C-2 indole), 136.1 (C-7a indole), 148.5
(C-6). HRMS (e.i.) m/z: calc. 267.1372, found 267.1381. For 6 (major
stereoisomer): 1H NMR (300 MHz, CDCl3): 1.97 (ddd, 1 H, J 13.7, 7.5 and
2.9 Hz, H-3), 2.40 (m, 1 H, H-3), 2.47 (m, 2 H, H-7), 2.92 (s, 3 H, NCH3),
3.35 (s, 3 H, OCH3), 3.55 (m, 1 H, H-3a), 4.25 (m, 1 H, H-7a), 5.02 (dd, 1
H, J 5.9 and 2.9 Hz, H-2), 6.72 (s, 1 H, H-5); 13C NMR (75.4 MHz, CDCl3)
25.5 (C-7), 36.6 (C-3), 40.8 (NCH3), 55.4 (OCH3), 57.1 (C-3a), 73.5 (C-7a),
79.9 (C-6), 104.0 (C-2), 123.1 (CN), 147.1 (C-5). HRMS (e.i.) m/z: calc.
194.1055, found 194.1060. For 7 (major stereoisomer, trans): 1H NMR (300
MHz, CDCl3) 2.30 (ddd, 1 H, J 16.8, 2.6 and 2.3 Hz, H-4), 2.75 (ddd, 1 H,
J 16.8, 3.6 and 2.0 Hz, H-4), 3.08 (s, 3 H, NCH3), 3.98 (dd, 1 H, J 2.6 and
2.3 Hz, H-2), 4.39 (m, 1 H, H-3), 6.77 (d, 1 H, J 2.0 Hz, H-6); 13C NMR
(75.4 MHz, CDCl3) 27.2 (C-4), 41.3 (NCH3), 52.7 (C-2), 63.2 (C-3), 76.3
(C-5), 115.4 (CN), 120.7 (CN), 145.9 (C-6). HRMS (e.i.) m/z: calc.
163.0746, found 163.0746.
titanium tetrachloride afforded tetrahydropyridinol 3, whereas
TFA-induced addition of methanol gave the ‘protected’ a-
alcoxy tetrahydropyridine 4. On the other hand, addition of
2-methylindole was achieved under acid catalysis, affording
adduct 5 with moderate stereoselectivity. In the latter two
reactions, minor amounts of the cis isomers were isolated.
Addition of methoxyethylene was achieved in the presence of
boron trifluoride. In this case, the intramolecular trapping of the
resulting carbonium ion by the hydroxy group allowed the
formation of the partially reduced furopyridine 6 (ring fusion
cis) in a one-pot transformation. Finally, Me3SiCN was added to
give a-amino nitrile 7 (epimeric mixture at C-2) in good
yield.∑
In conclusion, a useful, mild and selective method for the
formal epoxidation of 1,4-dihydropyridines has been devel-
oped, and some relevant reactions of the resulting compounds,
which act as iminium ion precursors, are reported. These results
present interesting possibilities in the study of the chemical
reactivity of dihydropyridines, a class of compounds with a
significant role in biochemistry and in natural product synthesis
(e.g. alkaloids and azasugars).
References
1 For reviews on the chemistry of dihydropyridines, see: U. Eisner and
J. Kuthan, Chem. Rev., 1972, 72, 1; D. M. Stout and A. I. Meyers, Chem.
Rev., 1982, 82, 223.
This work was supported by the Direccio´n General de
Investigacio´n Cient´ıfica y Te´cnica, Spain, (PB94-0214) and by
the Comissionat per Universitats i Recerca (Generalitat de
Catalunya, Grant SGR95-00428).
2 R. Lavilla, T. Gotsens, M. Guerrero and J. Bosch, Synthesis, 1995, 382
and references cited therein.
3 R. Lavilla, T. Gotsens, F. Gullo´n and J. Bosch, Tetrahedron, 1994, 50,
5233; M.-L. Bennasar, B. Vidal, A. La´zaro, R. Kumar and J. Bosch,
Tetrahedron Lett., 1996, 37, 3541.
4 M.-L. Bennasar, B. Vidal and J. Bosch, J. Chem. Soc., Chem. Commun.,
1995, 125; M.-L. Bennasar, B. Vidal and J. Bosch, J. Org. Chem., 1995,
60, 4280.
5 M.-L. Bennasar, B. Vidal and J. Bosch, J. Am. Chem. Soc., 1993, 115,
5340; M.-L. Bennasar, B. Vidal and J. Bosch, J. Org. Chem., 1996, 61,
1916.
6 L. A. Negievich, O. M. Grishin and A. A. Yasnikov, Ukr. Khim. Zh.,
1968, 34, 684 (Chem. Abstr., 1969, 70, 11513); L. A. Negievich,
O. M. Grishin and A. A. Yasnikov, Ukr. Khim. Zh. 1968, 34, 802 (Chem.
Abstr., 1969, 70, 28776).
7 For a 4 + 2 cycloaddition involving N-acyl-1,2-dihydropyridines and
singlet oxygen, see: M. Natsume, Y. Sekine, M. Ogawa, H. Soyagimi
and Y. Kitagawa, Tetrahedron Lett., 1979, 3476; for the osmylation of
N-acyl-1,2-dihydropyridines, see: T. Tschamber, F. Backenstrass,
M. Neuburger, M. Zehnder and J. Streith, Tetrahedron, 1994, 50,
1135.
8 J. K. Crandall, in Encyclopedia of Reagents for Organic Synthesis, ed.
L. A. Paquette, Wiley, Chichester, 1995, vol. 3, p. 2061; W. Adam,
R. Curci and J. O. Edwards, Acc. Chem. Res., 1989, 22, 205;
R. W. Murray, Chem. Rev., 1989, 89, 1187.
9 W. Adam, E.-M. Peters, K. Peters, H.-G. von Schnering and
V. Voerckel, Chem. Ber., 1992, 125, 1263; W. Adam, M. Ahrweiler,
K. Paulini, H.-U. Reissig and V. Voerckel, Chem. Ber., 1992, 125, 2719;
L. E. Burgess, E. K. M. Gross and J. Jurka, Tetrahedron Lett., 1996, 37,
3255.
Footnotes
† Presented in part at the Eigth FECHEM Conference on Heterocycles in
Bio-Organic Chemistry, September 1–4, 1996, Villa Olmo, Italy.
‡ The term non-biomimetic is used in a broad sense, meaning that the
process involves an oxygen transfer rather than the usual two-electron
oxidation observed in nature.
§ All new compounds were characterized by 1H and 13C NMR, IR, UV, MS
and HRMS.
¶ Typical procedure: A 1.1 fold excess of DMD (0.07 m) in acetone14 was
added to a solution of the dihydropyridine 1a (1 mmol) in acetone (20 ml)
at 0 °C. The progress of the reaction was monitored by TLC. When all the
starting material had been consumed (ca. 5 min), the solvent was removed
under reduced pressure and the residue was chromatographed through
neutral alumina (CH2Cl2–MeOH) to give the corresponding dioxane 2a
(72%). 1H NMR (300 MHz, CD3OD) 2.16 (ddd, 1 H, J 16.3, 2.7 and 1.5 Hz,
H-4), 2.53 (ddd, 1 H, J 16.3, 3.7 and 1.9 Hz, H-4), 3.15 (s, 3 H, CH3), 3.83
(m, 1 H, H-3), 4.41 (dd, 1 H, J 2.6 and 1.5 Hz, H-2), 6.74 (d, 1 H, J 1.9 Hz,
H-6); 13C NMR (75.4 MHz, CD3OD) 24.4 (C-4), 39.3 (CH3), 63.9 (C-3),
70.3 (C-5), 80.4 (C-2), 122.7 (CN), 146.0 (C-6). HRMS (e.i.) m/z: calc.
272.1273, found 272.1272.
∑ Selected spectral data for 3: 1H NMR (300 MHz, CDCl3) 2.20 (br s, 2 H,
H-4 and OH), 2.49 (br d, 1 H, J 15.8 Hz, H-4), 2.95 (s, 3 H, CH3), 3.01 (m,
1 H, J 12.6, 5.6, 2.5 and 0.9 Hz, H-2), 3.17 (ddd, 1 H, J 12.6, 2.6 and 1.1 Hz,
H-2), 4.19 (br s, 1 H, H-3), 6.79 (d, 1 H, J 0.9 Hz, H-6); 13C NMR (75.4
MHz, CDCl3): 30.0 (C-4), 42.9 (CH3), 52.9 (C-2), 61.9 (C-3), 69.5 (C-5),
123.0 (CN), 147.5 (C-6). For 4 (major stereoisomer, trans): 1H NMR (300
MHz, CDCl3) 2.12 (ddd, 1 H, J 16.6, 2.2 and 1.3 Hz, H-4), 2.40 (ddd, 1 H,
J 16.6, 3.8 and 1.9 Hz, H-4), 3.09 (s, 3 H, NCH3), 3.38 (s, 3 H, OCH3), 3.93
(m, 1 H, H-3), 4.07 (dd, 1 H, J 3.2 and 1.2 Hz, H-2), 6.77 (dd, 1 H, J 2.0 and
1.0 Hz, H-6); 13C NMR (75.4 MHz, CDCl3): 25.6 (C-4), 42.6 (NCH3), 56.4
(OCH3), 61.8 (C-3), 73.1 (C-5), 89.4 (C-2), 122.1 (CN), 145.2 (C-6). HRMS
(e.i.) m/z: calc. 168.0899, found 168.0902. For 5 (major stereoisomer,
trans): 1H NMR (300 MHz, CDCl3) 2.33 (dd, 1 H, J 15.6 and 6.7 Hz, H-4),
2.43 (s, 3 H, CH3), 2.50 (dd, 1 H, J 15.6 and 4.0 Hz, H-4), 2.81 (s, 3 H,
NCH3), 4.20 (ddd, 1 H, J 6.7, 5.4 and 4.0 Hz, H-3), 4.30 (d, 1 H, J 5.4 Hz,
H-2), 7.02 (s, 1 H, H-6), 7.07–7.20 (m, 2 H, H-5 and H-6 indole), 7.33 (d,
1 H, J 8.0 Hz, H-7 indole), 7.47 (d, 1 H, J 7.7 Hz, H-4 indole), 8.10 (br s,
1 H, NH); 13C NMR (75.4 MHz, CDCl3) 11.8 (CH3), 28.3 (C-4), 40.9
10 W. Adam, M. Heil and R. Hutterer, J. Org. Chem., 1992, 57, 4491.
11 M. E. Brewster, A. Simay, K. Czako, D. Winwood, H. Farag and
N. Bodor, J. Org. Chem., 1989, 54, 3721.
12 D. Yang, M.-K. Wong and Y.-C. Yip, J. Org. Chem., 1995, 60, 3887.
13 For related structures, see: B. Koppenhoefer, W. Winter and E. Bayer,
Liebigs Ann. Chem., 1983, 1986; W. Adam, K. Peters and M. Sauter,
Synthesis, 1994, 111; C. Agami, F. Couty, L. Hamon, B. Prince and
C. Puchot, Tetrahedron, 1990, 46, 7003; W. Adam, D. Reinhardt,
H.-U. Reissig and K. Paulini, Tetrahedron, 1995, 51, 12257.
14 DMD solutions were prepared according to W. Adam, J. Bialas and
L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377, and the dioxirane
content (ca. 0.07 m) was determined by iodometric titration.
Received, 9th October 1996; Com. 6/06919C
214
Chem. Commun., 1997