conformations should show a total of 22 resonances. We
conclude that some degree of flexibility, made possible by the
ethylene glycol links, establishes a second, time-average C2
axis. Warming to 55 °C results in collapse of the two 13C imine
resonances into a single peak at 165.04 ppm, possibly as a result
of 1,3-alternate Ô 1,2-alternate exchange which becomes fast
on the NMR time scale.
comparison of the enantioselectivity of the bimetallic calixsalen
complexes reported in this work with the well characterized
Jacobsen catalysts. Aqueous NaOCl oxidation of styrene in the
presence of the brown dimanganese complex of 5d in CH2Cl2
gave only epoxide product with 52% ee in 63% isolated
chemical yield at 25 °C. This result compares favourably with
the best value of 59% ee at 23 °C in CH2Cl2 for a mononuclear
MnIII salen catalyst reported by Jacobsen.12
Although the solid state conformation of 5a·DMF appears ill-
disposed to provide two tetradentate salen coordination sites,
reaction with MnIII salts is facile. Addition of a solution of
Mn(OAc)3 to solutions of the salen dimers 5 or 6 caused an
immediate colour change from yellow to deep brown. An
electrospray mass spectrum of a methanolic solution of the dark
brown product obtained by treatment of 5d with Mn(OAc)3
showed strong peaks at m/z 1093 [(5d 24H)Mn2·2MeOH-
·CH2O]+, 1063 [(5d 24H)Mn2·2MeOH]+, 1045 [(5d
24H)Mn2·HCO2H]+, 999 [(5d 24H)Mn2]+ and 893 [5d]+,
consistent with the formation of a bimetallic complex.
Preliminary tests of the brown MnII macrocyclic salen
complexes as catalysts for the epoxidation of styrene, the most
challenging enantioselective version of this type of reaction thus
far,12 were conducted at room temperature (23 °C) using NaOCl
(aq) as terminal oxidant (Scheme 2). Both ring-opened
chloromethyl ether and epoxide products were obtained with
modest enantioselectivity (Scheme 2) in methanolic solvent.
Chemoselectivity responds to the steric requirements of the R
groups. For example, tert-butyl substituted macrocycle 5d gave
epoxide+chloro ether in the ratio 100+3 but only one product
(85–87% chemical yield), identified as 1-phenyl-1-chloro-
2-methoxy ethane by mass spectrometric analysis and compar-
ison of NMR data with 1-phenyl-1-methoxy-2-chloroethane
(obtained through direct chlorination of styrene in MeOH), was
isolated in the presence of unsubstituted dimer 5a or 6.
Interestingly, both epoxide and chlorinated products (chloro
ether or chlorohydrin) in a ratio of 10+1 are obtained with
catalyst 5b (R = CH3).
C. J. acknowledges the Natural Science and Engineering
Council of Canada (NSERC) for a grant in aid of research. Z. L.
acknowledges Memorial University for financial support. We
thank Professor M. McGlinchey and MacMaster University for
500 MHz NMR data reported for compound 6 and Mr David
Miller, Memorial University Crystallography Laboratory, for
determination of the molecular structure of 5a.
Notes and references
† Crystal data for 6a: C42H40O4N4·DMF, yellow, monoclinic, space group
P21/c (#14), a = 14.640(3), b = 25.679(4), c = 11.045(6) Å, b =
81.97(2)°, V = 4112(4) Å3, Z = 4, 5858 unique reflections, R = 0.077, Rw
= 0.045, GOF = 1.80. CCDC 182/1289.
1 W. Zhang and E. N. Jacobsen, J. Org. Chem., 1991, 56, 2296; S. H.
Zhao, P. R. Ortiz, B. A. Keys and K. G. Davenport, Tetrahedron Lett.,
1996, 37, 2725; P. J. Pospisil, D. H. Carsten and E. N. Jacobsen, Chem.
Eur. J., 1996, 2, 974; T. Hamada, T. Fukuda, H. Imanishi and T.
Katsuki, Tetrahedron, 1996, 52, 515; T. Nagata, K. Imagawa, T.
Yamada and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1995, 68, 1455; K.
D. S. Bernardo, A. Robert, F. Dahan and B. Meunier, New J. Chem.,
1995, 19, 129; T. Kuroki, T. Hamada and T. Katsuki, Chem. Lett., 1995,
339; K. G. Rasmussen, D. S. Thomsen and K. A. Jorgensen, J. Chem.
Soc., Perkin Trans. 1, 1995, 2009; I. Fernández, J. R. Pedro and R.
Delasalud, Tetrahedron, 1996, 52, 12 031.
2 (a) E. N. Jacobsen, in Catalytic Asymmetric Synthesis, ed. I. Ojima,
VCH, New York, 1993, p. 159; (b) J. P. Collman, X. Zhang, V. J. Lee,
E. S. Uffelman and J. I. Brauman, Science, 1993, 261, 1404; (c) V.
Schurig and F. Betschinger, Chem. Rev., 1992, 92, 873; (d) T. Katsuki,
Coord. Chem. Rev., 1995, 140, 189.
3 K. B. M. Janssen, I. Laquiere, W. Dehaen, R. F. Parton, I. F. J.
Vankelecom and P. A. Jacobs, Tetrahedron: Asymmetry, 1997, 8,
3481.
4 B. B. De, B. B. Lohray, S. Sivaram and P. K. Dhal, J. Polym. Sci. Part
A: Polym. Chem., 1997, 35, 1809.
5 H. Brunner and H. Schiessling, Angew. Chem., Int. Ed. Engl., 1994, 33,
125; C. Fraser, R. Ostrander, A. L. Rheingold, C. White and B. Bosnich,
Inorg. Chem., 1994, 33, 324; C. Fraser and B. Bosnich, Inorg. Chem.,
1994, 33, 338; F. C. J. M. van Veggel, W. Verboom and D. Reinhoudt,
Chem. Rev., 1994, 94, 279.
6 (a) J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89; (b) H. L.
Anderson and J. K. Sanders, J. Chem. Soc., Perkin Trans. 1, 1995, 2223;
(c) A. J. Kirby, Angew. Chem., Int. Ed. Engl., 1996, 35, 707.
7 P. Scrimin, P. Tecilla, U. Tonellato and A. Veronese, Molecular Design
and Bioorganic Catalysis, ed. C. S. Wilcox and A. D. Hamilton,
Kluwer, Dordrecht, 1996, p. 211.
The ring opened products obtained were uniquely anti-
Markownikoff, hence Scheme 2 may have some important
synthetic applications.13 Reversed regioselective chlorination
of alkenes has previously been observed in alkoxychlorination
of allylamines with Wacker type catalysts14 but Markownikoff
addition was found for all other alkenes tested.
Unlike mononuclear salen catalysts,2a the enantioselectivity
of the macrocyclic MnIII–calixsalen systems reported in this
work appears unrelated to the steric requirements of the R
groups on the ortho position of the phenol in the salen frame
(Scheme 2). We therefore speculate that the observed enantio-
selectivity is controlled by host–guest intra-cavity inter-
actions.
The dimanganese complex isolated from ligand 5d, which
unlike that from 5a was soluble in CH2Cl2, allows direct
Cl
OMe
8 D. J. Cram, Angew. Chem., Int. Ed. Engl., 1988, 27, 1009.
9 R. W. Quan, Z. Li and E. N. Jacobsen, J. Am. Chem. Soc., 1996, 118,
8156.
6a, 7
Ph
MeOH–CH2Cl2
85–87% (38% ee)
10 G. Casiraghi, G. Casnati, M. Corina, A. Pochini, G. Puglia, G. Sartori
and R. J. Ungaro, J. Chem. Soc., Perkin Trans. 1, 1978, 318; C. S.
Marvel and N. Tarköy, J. Am. Chem. Soc., 1957, 79, 6000; A. R. van
Doorn, R. Shaafstra, M. Bos, S. Harkema, J.-V. Erden, W. Verboom and
D. N. Reinhoudt, J. Org. Chem., 1991, 56, 6083.
11 C. Wieser, C. B. Dieleman and D. Matt, Coord. Chem. Rev., 1997, 165,
93.
12 M. Palucki, P. J. Pospisil, W. Zhang and E. N. Jacobsen, J. Am. Chem.
Soc., 1994, 116, 9333.
Cl
OMe
Mn(OAc)3
Ph
+
NaOCl (aq)
6b–d
O
Ph
MeOH–CH2Cl2
23 °C
Ph
32–67% (34–35% ee)
13 A. El-Qisairi, O. Hamed and P. M. Henry, J. Org. Chem., 1998, 63,
2790; J. Y. Lai, F. S. Wang, G. Z. Guo and L. X. Dai, J. Org. Chem.,
1993, 58, 6944; H. Nakamura, M. Sekido, M. Ito and Y. Yamamoto,
J. Am. Chem. Soc., 1998, 120, 6838.
O
6d
CH2Cl2
Ph
14 J. Y. Lai, X. X. Shi and X. Dai, J. Org. Chem., 1992, 57, 3485.
63% (52% ee)
Scheme 2
Communication 9/00018F
1532
Chem. Commun., 1999, 1531–1532