Organic Letters
Letter
orthoacetate in the presence of p-toluenesulfonic acid
generated the cyclic orthoacetate, which was subjected to
selective ring opening of the resulting orthoacetate with 50%
aqueous acetic acid to produce 3-hydroxyl disaccharide
acceptor 23 (72% over two steps).
Coupling of disaccharide acceptor 23 with L-glycero-D-
manno-heptosyl N-phenyl trifluoroacetimidate 2 under the
catalysis of TfOH (0.1 equiv) in dichloromethane at −40 °C
afforded exclusively α-linked L,D-Hep-D,D-Hep-Kdo trisacchar-
ide 24 as the single product in 72% yield. The desired
configuration of trisaccharide 24 was confirmed by the
Qixin Lou − Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and
Technology, Shanghai 200237, China
Yirong Zhu − Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and
Technology, Shanghai 200237, China
Notes
The authors declare no competing financial interest.
coupling constants between C1 and H1 of the corresponding
1
L,D-Hep and D,D-Hep residues ( J
= 172.5 and 174.5 Hz,
C1,H1
ACKNOWLEDGMENTS
respectively). Cleavage of the three isopropylidene groups in
4 with 80% aqueous acetic acid at 70 °C was followed by
■
2
Financial support from the National Natural Science
Foundation of China (21871081 and 22071054) and the
Fundamental Research Funds for the Central Universities
(50321031916002 and 22221818014) is gratefully acknowl-
edged.
removal of all ester groups with potassium carbonate in
methanol and then aqueous sodium hydroxide. Finally,
hydrogenolysis of the benzyl and benzyloxycarbonyl groups
over Pd(OH) /C in methanol, water, and acetic acid furnished
2
target trisaccharide 1 of the LPS of V. parahemolyticus O2 in
6
2% yield over four steps. The structure of trisaccharide 1 was
REFERENCES
■
unambiguously confirmed by a combination of spectroscopic
analysis (NMR and MS).
(
1) Holst, O. In Structure of the Lipopolysaccharide Core Region in
Bacterial Lipopolysaccharide; Knirel, Y. A., Valvano, M. A., Eds.;
19
In conclusion, we have developed a convenient and efficient
approach for the synthesis of the L,D-Hep and D,D-Hep building
blocks from L-lyxose and D-ribose, respectively, enabling the
first stereoselective synthesis of the unique LPS core
trisaccharide of V. parahemolyticus O2. The synthesis of the
L,D-Hep and D,D-Hep building blocks featured the diaster-
eoselective Mukaiyama-type aldol reactions of L-lyxose and D-
ribose derivatives with the silyl enol ether as key steps. By
employing the synthetic L,D-Hep and D,D-Hep building blocks
as synthons, we furnished the facile and stereosective synthesis
of the unique α-L,D-Hep-(1→3)-α-D,D-Hep-(1→5)-α-Kdo core
trisaccharide of the lipopolysaccharide of V. parahemolyticus
O2. This approach for the preparation of L,D-Hep and D,D-Hep
building blocks may find further application in the synthesis of
diverse LPS fragments of Gram-negative bacteria.
Springer-Verlag: Vienna, 2011.
(2) (a) Kosma, P. Curr. Org. Chem. 2008, 12, 1021−1039.
(b) Zamyatina, A.; Gronow, S.; Puchberger, M.; Graziani, A.;
Hofinger, A.; Kosma, P. Carbohydr. Res. 2003, 338, 2571−2589.
(3) (a) Cipolla, L.; Gabrielli, L.; Bini, D.; Russo, L.; Shaikh, N. Nat.
Prod. Rep. 2010, 27, 1618−1629. (b) Raetz, C. R. H.; Whitfield, C.
Annu. Rev. Biochem. 2002, 71, 635−700. (c) Angata, T.; Varki, A.
Chem. Rev. 2002, 102, 439−469.
(4) Brade, H.; Opal, S. M.; Vogel, S. N.; Morrison, D. C. Endotoxin
in Health and Disease; Marcel Dekker: New York, 1999.
5) Wright, G. D.; Sutherland, A. D. Trends Mol. Med. 2007, 13,
(
260−267.
(6) (a) Holst, O. FEMS Microbiol. Lett. 2007, 271, 3−11.
(b) Gronow, S.; Brade, H. J. Endotoxin Res. 2001, 7, 3−23.
(c) Beutler, B.; Rietschel, E. T. Nat. Rev. Immunol. 2003, 3, 169−
1
76. (d) Bryant, C. E.; Spring, D. R.; Gangloff, M.; Gay, N. J. Nat.
Rev. Microbiol. 2010, 8, 8−14.
7) (a) Bernlind, C.; Oscarson, S. J. Org. Chem. 1998, 63, 7780−
7788. (b) Crich, D.; Banerjee, A. J. Am. Chem. Soc. 2006, 128, 8078−
086. (c) Jaipuri, F. A.; Collet, B. Y. M.; Pohl, N. L. Angew. Chem., Int.
(
ASSOCIATED CONTENT
sı Supporting Information
■
8
*
Ed. 2008, 47, 1707−1710. (d) Kong, L.; Vijayakrishnan, B.; Kowarik,
M.; Park, J.; Zakharova, A. N.; Neiwert, L.; Faridmoayer, A.; Davis, B.
G. Nat. Chem. 2016, 8, 242−249.
(
8) (a) Yang, Y.; Martin, C. E.; Seeberger, P. H. Chem. Sci. 2012, 3,
Experimental procedures, characterization data, and
8
96−899. (b) Yang, Y.; Oishi, S.; Martin, C. E.; Seeberger, P. H. J.
Am. Chem. Soc. 2013, 135, 6262−6271. (c) Anish, C.; Guo, X.;
Wahlbrink, A.; Seeberger, P. H. Angew. Chem., Int. Ed. 2013, 52,
9
524−9528. (d) Reinhardt, A.; Yang, Y.; Claus, H.; Pereira, C. L.;
Cox, A. D.; Vogel, U.; Anish, C.; Seeberger, P. H. Chem. Biol. 2015,
2, 38−49.
9) (a) Dziewiszek, K.; Zamojski, A. Carbohydr. Res. 1986, 150,
63−171. (b) Dziewiszek, K.; Banaszek, A.; Zamojski, A. Tetrahedron
■
2
(
You Yang − Shanghai Key Laboratory of New Drug Design,
1
Lett. 1987, 28, 1569−1572. (c) Boons, G. J. P. H.; van der Klein, P. A.
M.; van der Marel, G. A.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas.
1988, 107, 507−508. (d) Bernlind, C.; Bennett, S.; Oscarson, S.
Tetrahedron: Asymmetry 2000, 11, 481−492. (e) Kim, M.; Grzeszczyk,
B.; Zamojski, A. Tetrahedron 2000, 56, 9319−9337. (f) Tikad, A.;
Vincent, S. P. in Modern Synthetic Methods in Carbohydrate Chemistry;
Vidal, S., Werz, D., Eds.; Wiley-VCH, 2014.
Junchang Wang − Shanghai Key Laboratory of New Drug
Design, School of Pharmacy, East China University of Science
and Technology, Shanghai 200237, China
Jingjing Rong − Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and
Technology, Shanghai 200237, China
(
10) (a) Brimacombe, J. S.; Kabir, A. K. M. S. Carbohydr. Res. 1986,
52, 329−334. (b) Jorgensen, M.; Iversen, E. H.; Madsen, R. J. Org.
1
Chem. 2001, 66, 4625−4629. (c) Crich, D.; Banerjee, A. Org. Lett.
2005, 7, 1395−1398. (d) Dohi, H.; Perion, R.; Durka, M.; Bosco, M.;
Roue, Y.; Moreau, F.; Grizot, S.; Ducruix, A.; Escaich, S.; Vincent, S.
D
Org. Lett. XXXX, XXX, XXX−XXX