Bioconjugate Chemistry
Article
(22) Lown, J. W. (1993) Discovery and development of
anthracycline antitumour antibiotics. Chem. Soc. Rev. 22, 165−176.
(23) Carvalho, C., Santos, R. X., Cardoso, S., Correia, S., Oliveira, P.
J., Santos, M. S., and Moreira, P. I. (2009) Doxorubicin: The Good,
the Bad and the Ugly Effect. Curr. Med. Chem. 16, 3267−3285.
(24) Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L.
(2004) Anthracyclines: Molecular advances and pharmacologic
developments in antitumor activity and cardiotoxicity. Pharmacol.
Rev. 56, 185−229.
(25) Gewirtz, D. A. (1999) A critical evaluation of the mechanisms of
action proposed for the antitumor effects of the anthracycline
antibiotics Adriamycin and daunorubicin. Biochem. Pharmacol. 57,
727−741.
(26) Shepherd, G. M. (2003) Hypersensitivity reactions to
chemotherapeutic drugs. Clin. Rev. Allergy Immunol. 24, 253−262.
(27) Sonis, S. T., Elting, L. S., Keefe, D., Peterson, D. E., Schubert,
M., Hauer-Jensen, M., Bekele, B. N., Raber-Durlacher, J., Donnelly, J.
P., and Rubenstein, E. B. (2004) Perspectives on cancer therapy-
induced mucosal injury - Pathogenesis, measurement, epidemiology,
and consequences for patients. Cancer 100, 1995−2025.
(28) Juliano, R. L., and Stamp, D. (1975) Effect of particle size and
charge on clearance rates of liposomes encapsulated drugs. Biochem.
Biophys. Res. Commun. 63, 651−658.
(29) Poste, G., Bucana, C., Raz, A., Bugelski, P., Kirsh, R., and Fidler,
I. J. (1982) Analysis of the fate of systematically administered
liposomes and implications for their use in drug delivery. Cancer Res.
42, 1412−1422.
(30) Gabizon, A., Shmeeda, H., and Barenholz, Y. (2003)
Pharmacokinetics of pegylated liposomal doxorubicin - Review of
animal and human studies. Clin. Pharmacokinet. 42, 419−436.
(31) Ta, H. T., Dass, C. R., Larson, I., Choong, P. F. M., and
Dunstan, D. E. (2009) A chitosan-dipotassium orthophosphate
hydrogel for the delivery of Doxorubicin in the treatment of
osteosarcoma. Biomaterials 30, 3605−3613.
(32) Ta, H. T., Han, H., Larson, I., Dass, C. R., and Dunstan, D. E.
(2009) Chitosan-dibasic orthophosphate hydrogel: A potential drug
delivery system. Int. J. Pharm. 371, 134−141.
(33) Tan, M. L., Friedhuber, A. M., Dunstan, D. E., Choong, P. F. M.,
and Dass, C. R. (2010) The performance of doxorubicin encapsulated
in chitosan-dextran sulphate microparticles in an osteosarcoma model.
Biomaterials 31, 541−551.
(34) Mitra, S., Gaur, U., Ghosh, P. C., and Maitra, A. N. (2001)
Tumour targeted delivery of encapsulated dextran-doxorubicin
conjugate using chitosan nanoparticles as carrier. J. Controlled Release
74, 317−323.
(35) Sun, K., Wang, J., Zhang, J., Hua, M., Liu, C., and Chen, T.
(2011) Dextran-g-PEI nanoparticles as a carrier for co-delivery of
adriamycin and plasmid into osteosarcoma cells. Int. J. Biol. Macromol.
49, 173−180.
(36) Monem, A. S., Elbialy, N., and Mohamed, N. (2014)
Mesoporous silica coated gold nanorods loaded doxorubicin for
combined chemo-photothermal therapy. Int. J. Pharm. 470, 1−7.
(37) Joseph, M. M., Aravind, S. R., George, S. K., Pillai, K. R., Mini,
S., and Sreelekha, T. T. (2014) Galactoxyloglucan-Modified Nano-
carriers of Doxorubicin for Improved Tumor-Targeted Drug Delivery
with Minimal Toxicity. J. Biomed. Nanotechnol. 10, 3253−3268.
(38) Farquhar, D., Cherif, A., Bakina, E., and Nelson, J. A. (1998)
Intensely potent doxorubicin analogues: Structure-activity relationship.
J. Med. Chem. 41, 965−972.
(39) DeFeo-Jones, D., Garsky, V. M., Wong, B. K., Feng, D. M.,
Bolyar, T., Haskell, K., Kiefer, D. M., Leander, K., McAvoy, E., Lumma,
P., et al. (2000) A peptide-doxorubicin ’prodrug’ activated by prostate-
specific antigen selectively kills prostate tumor cells positive for
prostate-specific antigen in vivo. Nat. Med. 6, 1248−1252.
(40) Ibsen, S., Zahavy, E., Wrasidlo, W., Hayashi, T., Norton, J., Su,
Y., Adams, S., and Esener, S. (2013) Localized In Vivo Activation of a
Photoactivatable Doxorubicin Prodrug in Deep Tumor Tissue.
Photochem. Photobiol. 89, 698−708.
(41) Volker, T., Dempwolff, F., Graumann, P. L., and Meggers, E.
(2014) Progress towards bioorthogonal catalysis with organometallic
compounds. Angew. Chem., Int. Ed. 53, 10536−40.
(42) Damen, E. W. P., de Groot, F. M. H., and Scheeren, H. W.
(2001) Novel anthracycline prodrugs. Expert Opin. Ther. Pat. 11, 651−
666.
(43) Ramogida, C. F., and Orvig, C. (2013) Tumour targeting with
radiometals for diagnosis and therapy. Chem. Commun. 49, 4720−
4739.
(44) Levadala, M. K., Banerjee, S. R., Maresca, K. P., Babich, J. W.,
and Zubieta, J. (2004) Direct reductive alkylation of amino acids:
Synthesis of bifunctional chelates for nuclear imaging. Synthesis 2004,
1759−1766.
(45) Robert, J., and Gianni, L. (1993) Pharmacokinetics and
metabolism of anthracyclines. Cancer Surv. 17, 219−252.
(46) Licata, S., Saponiero, A., Mordente, A., and Minotti, G. (2000)
Doxorubicin metabolism and toxicity in human myocardium: Role of
cytoplasmic deglycosidation and carbonyl reduction. Chem. Res.
Toxicol. 13, 414−420.
(47) Cortesfunes, H., Gosalvez, M., Moyano, A., Manas, A., and
Mendiola, C. (1979) Early clinical trial with quelamycin. Cancer Treat.
Rep. 63, 903−907.
(48) Cortes, H., Vicente, J., Baena, L., Otero, J., and Gosalvez, M.
(1978) Preliminary evaluation of a phase-I clinical study of
quelamycin. Eur. J. Cancer 14, 1359−1361.
(49) Cortesfunes, H., Brugarolas, A., and Gosalvez, M. (1980)
Quelamycin - a summary of phase-I clinical trials. Recent Results Cancer
Res. 74, 200−206.
(50) Gosalvez, M., Blanco, M. F., Vivero, C., and Valles, F. (1978)
Quelamycin, a new derivative of adriamycin with several possible
therapeutic advantages. Eur. J. Cancer 14, 1185−1190.
(51) Abraham, S. A., Edwards, K., Karlsson, G., MacIntosh, S., Mayer,
L. D., McKenzie, C., and Bally, M. B. (2002) Formation of transition
metall-doxorubicin complexes inside liposomes. Biochim. Biophys. Acta,
Biomembr. 1565, 41−54.
(52) Monti, E., Paracchini, L., Piccinini, F., Malatesta, V., Morazzoni,
F., and Supino, R. (1990) Cardiotoxicity and antitumour activity of a
copper(II) doxorubicin chelate. Cancer Chemother. Pharmacol. 25,
333−336.
(53) Zunino, F., Pratesi, G., Formelli, F., and Pasini, A. (1990)
Evaluation of platinum-doxorubicin complex in experimental tumor
systems. Invest. New Drugs 8, 341−345.
(54) Tachibana, M., Iwaizumi, M., and Terokubota, S. (1987)
Electron paramagnetic resonance studies of copper(II) and cobalt(II)
complexes of adriamycin. J. Inorg. Biochem. 30, 133−140.
(55) Fiallo, M. M. L., and Garniersuillerot, A. (1986) Metal
anthracycline complexes as a new class of anthracycline derivatives,
Pd(II)-adriamycin and Pd(II) daunorubicin complexes- physicochem-
ical characteristics and antitumour activity. Biochemistry 25, 924−930.
(56) Rizvi, F. A., Bokhari, T. H., Roohi, S., and Mushtaq, A. (2012)
Direct labeling of doxorubicin with technetium-99m: its optimization,
characterization and quality control. J. Radioanal. Nucl. Chem. 293,
303−307.
(57) Kassis, A. I., Sastry, K. S. R., and Adelstein, S. J. (1987) Kinetics
of Uptake, Retention, and Radiotoxicity of I-125 Udr in Mammalian-
Cells - Implications of Localized Energy Deposition by Auger
Processes. Radiat. Res. 109, 78−89.
(58) Balagurumoorthy, P., Xu, X., Wang, K., Adelstein, S. J., and
Kassis, A. I. (2012) Effect of distance between decaying I-125 and
DNA on Auger-electron induced double-strand break yield. Int. J.
Radiat. Biol. 88, 998−1008.
(59) Barcelo, F., Martorell, J., Gavilanes, F., and Gonzalezros, J. M.
(1988) Equilibrium binding of daunomycin and adriamycin to calf
thymus DNA - temperature and ionic-strength dependence of
thermodynamic parameters. Biochem. Pharmacol. 37, 2133−2138.
(60) Carter, M. T., Rodriguez, M., and Bard, A. J. (1989) Voltametric
studies of the interaction of metal-chelates with DNA. 2. Tris-chelated
complexes of cobalt(III) and iron(II) with 1,10-phenantroline and
2,2′-bipyridine. J. Am. Chem. Soc. 111, 8901−8911.
I
Bioconjugate Chem. XXXX, XXX, XXX−XXX