4
Hu et al. Sci China Chem June (2015) Vol.58 No.6
JF. Evolution of a fourth generation catalyst for the amination and
amination of azoles with chloroamines at room temperature. J Am
Chem Soc, 2010, 132: 6900–6901; b) Sun K, Li Y, Xiong T, Zhang J,
Zhang Q. Palladium-catalyzed C−H aminations of anilides with N-
fluorobenzenesulfonimide. J Am Chem Soc, 2011, 133: 1694–1697;
c) Yoo EJ, Ma S, Mei TS, Chan KSL, Yu JQ. Pd-catalyzed intermo-
lecular C–H amination with alkylamines. J Am Chem Soc, 2011, 133:
7652–7655; d) Ng KH, Zhou Z, Yu WY. Rhodium(III)-catalyzed in-
termolecular direct amination of aromatic C–H bonds with N-chlo-
roamines. Org Lett, 2012, 14: 272–275; e) Grohmann C, Wang H,
Glorius F. Rh[III]-catalyzed direct C–H amination using N-chloroa-
mines at room temperature. Org Lett, 2012, 14: 656–659
thioetherification of aryl halides. Acc Chem Res, 2008, 41: 1534–
1544; c) Wolfe JP, Wagam S, Marcoux JF, Buchwald SL. Rational
development of practical catalysts for aromatic carbon-nitrogen bond
formation. Acc Chem Res, 1998, 31: 805–818; d) Paul F, Patt J,
Hartwig JF. Palladium-catalyzed formation of carbon-nitrogen bonds.
Reaction intermediates and catalyst improvements in the hetero
cross-coupling of aryl halides and tin amides. J Am Chem Soc, 1994,
116: 5969–5970; e) Guram AS, Buchwald SL. Palladium-catalyzed
aromatic aminations with in situ generated aminostannanes. J Am
Chem Soc, 1994, 116: 7901–7902
4
For recent reviews on direct C–H amination: a) Wencel-Delord J,
Droge T, Liu F, Glorius F. Towards mild metal-catalyzed C–H bond
activation. Chem Soc Rev, 2011, 40: 4740–4761; b) Cho SH, Kim JY,
Kwak J, Chang S. Recent advances in the transition metal-catalyzed
twofold oxidative C–H bond activation strategy for C–C and C–N
bond formation. Chem Soc Rev, 2011, 40: 5068–5083; c) Song G,
Wang F, Li X. C–C, C–O and C–N bond formation via rhodium(III)-
catalyzed oxidative C–H activation. Chem Soc Rev, 2012, 41: 3651–
3678; d) Stokes BJ, Driver TG. Transition metal-catalyzed formation
of N-heterocycles via aryl- or vinyl- C–H bond amination. Eur J Org
Chem, 2011: 4071–4088; e) Lu H, Zhang XP. Catalytic C–H func-
tionalization by metalloporphyrins: recent developments and future
directions. Chem Soc Rev, 2011, 40: 1899–1909; f) Collet F, Lescot
C, Dauban P. Catalytic C–H amination: the stereoselectivity issue.
Chem Soc Rev, 2011, 40: 1926–1936; g) Roizen JL, Harvey ME, Du
Bios J. Metal-catalyzed nitrogen-atom transfer methods for the oxi-
dation of aliphatic C–H bonds. Acc Chem Res, 2012, 45: 911–922
For recent reviews on C–H activation, see: a) Rouquet G, Chatani N.
Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using
bidentate directing groups. Angew Chem Int Ed, 2013, 52: 11726–
11743; b) Li BJ, Shi ZJ. From C(sp2)–H to C(sp3)–H: systematic
studies on transition metal-catalyzed oxidative C–C formation. Chem
Soc Rev, 2012, 41: 5588–5598; c) Kuhl N, Hopkinson MN, Wencel-
Delord J, Glorius F. Beyond directing groups: transition-metal-
catalyzed C–H activation of simple arenes. Angew Chem Int Ed, 2012,
51: 10236–10254; d) Ackermann L, Kapdi AR, Potukuchi HK, Ko-
zhushkov SI. Synthesis via C–H bond functionalizations. In: Li CJ,
Ed. Handbook of Green Chemistry. Weinheim: Wiley-VCH, 2012.
259; e) Neufeldt SR, Sanford MS. Controlling site selectivity in pal-
ladium-catalyzed C–H bond functionalization. Acc Chem Res, 2012,
45: 936–946; f) Colby DA, Tsai AS, Bergman RG, Ellman JA. Rho-
dium catalyzed chelation-assisted C–H bond functionalization reac-
tion. Acc Chem Res, 2012, 45: 814–825; g) Engle KM, Mei TS, Wasa
M, Yu JQ. Weak coordination as a powerful means for developing
broadly useful C–H functionalization reactions. Acc Chem Res, 2012,
45: 788–802; h) Arockiam PB, Bruneau C, Dixueuf PH. Rutheni-
um(II)-catalyzed C–H bond activation and functionalization. Chem
Rev, 2012, 112: 5879–5918; i) Ackermann L. Carboxylate-assisted
transition-metal-catalyzed C−H bond functionalizations: mechanism
and scope. Chem Rev, 2011, 111: 1315–1345; j) Xu LM, Li BJ, Yang
Z, Shi ZJ. Organopalladium(IV) chemistry. Chem Soc Rev, 2010, 39:
712–733
8
9
Kim JY, Park SH, Ryu J, Cho SH, Kim SH, Chang S. Rhodium-
catalyzed intermolecular amidation of arenes with sulfonyl azides via
chelation-assisted C–H bond activation. J Am Chem Soc, 2012, 134:
9110–9113
For recent transition-metal catalyzed amidation reaction with sulfonyl
azide as nitrogen source, see: a) Zheng QZ, Liang YF, Qin C, Jiao N.
Ru(II)-catalyzed intermolecular C–H amidation of weakly coordinat-
ing ketones. Chem Commun, 2013, 49: 5654–5656; b) Yu DG, Suri
M, Glorius F. Rh(III)/Cu(II)-cocatalyzed synthesis of 1H-indazoles
through C–H amidation and N–N bond formation. J Am Chem Soc,
2013, 135: 8802–8805; c) Thirunavukkarasu VS, Raghuvanshi K,
Ackermann L. Expedient C–H amidations of heteroaryl arenes cata-
lyzed by versatile ruthenium(II) catalysts. Org Lett, 2013, 15: 3286–
3289; d) Kim J, Kim J, Chang S. Ruthenium-catalyzed direct C–H
amidation of arenes including weakly coordinating aromatic ketones.
Chem Eur J, 2013, 19: 7328–7333; e) Bhanuchandra M, Yadav MR,
Rit RK, Kuram MR, Sahoo AK. Ru(II)-catalyzed intermolecular
ortho-C–H amidation of aromatic ketones with sulfonyl azides. Chem
Commun, 2013, 49: 5225–5227; f) Shi J, Zhou B, Yang Y, Li Y.
Rhodium-catalyzed regioselective amidation of indoles with sulfonyl
azides via C–H bond activation. Org Biomol Chem, 2012, 10: 8953–
8955; g) Yadav MR, Rit RJ, Sahoo AK. Sulfoximine directed inter-
molecular o-C–H amidation of arenes with sulfonyl azides. Org Lett,
2013, 15: 1638–1641; h) Lee D, Kim Y, Chang S. Iridium-catalyzed
direct arene C–H bond amidation with sulfonyl- and aryl- azides. J
Org Chem, 2013, 78: 11102–11109
5
10 For recent transition-metal catalyzed amination reaction with other
types of azide as nitrogen source, see: a) Ryu J, Kwak J, Shin K, Lee
D, Chang S. Ir(III)-catalyzed mild C–H amidation of arenes and al-
kenes: an efficient usage of acyl azides as the nitrogen source. J Am
Chem Soc, 2013, 135: 12861–12868; b) Lian Y, Hummel JR, Berg-
man RG, Ellman JA. Facile synthesis of unsymmetrical acridines and
phenazines by a Rh(III)-catalyzed amination/cyclization/aromatiza-
tion cascade. J Am Chem Soc, 2013, 135: 12548–12551; c) Ryu J,
Shin K, Park SH, Kim JY, Chang S. Rhodium-catalyzed direct C–H
amination of benzamides with aryl azides: a synthetic route to dia-
rylamines. Angew Chem Int Ed, 2012, 51: 9904–9908; d) Shin K,
Baek Y, Chang S. Direct C–H amination of arenes with alkyl azides
under rhodium catalysis. Angew Chem Int Ed, 2013, 52: 8031–8036;
e) Tang C, Yuan Y, Cui Y, Jiao N. Rh-catalyzed diarylamine synthe-
sis by intermolecular C–H amination of heteroarylarenes. Eur J Org
Chem, 2013, 2013: 7480–7483
6
For examples of oxidative amination of activated arenes: a) Wang Q,
Schreiber SL. Copper-mediated amidation of heterocyclic and aro-
matic C−H bonds. Org Lett, 2009, 11: 5178–5180; b) Monguchi D,
Fujiwara T, Furukawa H, Mori A. Direct amination of azoles via cat-
alytic C−H, N−H coupling. Org Lett, 2009, 11: 1607–1610. For ex-
amples of oxidative direct amination of arenes bearing directing
group: c) Xiao B, Gong TJ, Xu J, Liu ZJ, Liu L. Palladium-catalyzed
intermolecular directed C−H amidation of aromatic ketones. J Am
Chem Soc, 2011, 133: 1466–1474; d) John A, Nicholas KM. Copper-
catalyzed amidation of 2-phenylpyridine with oxygen as the terminal
oxidant. J Org Chem, 2011, 76: 4158–4162
11 a) Sundberg RJ. Indoles. San Diego: Academic Press, 1996; b) Kat-
rizky AR, Ress CW. Comprehensive Heterocyclic Chemistry. 2nd Ed.
Pergamon, 1996. 119
12 For some recent reviews: see a) Humphrey GR, Kuethe JT. Practical
methodologies for the synthesis of indoles. Chem Rev, 2006, 106:
2875–2911; b) Vicente R. Recent advances in indole syntheses: new
routes for a classic target. Org Biomol Chem, 2011, 9: 6469–6480; c)
Cacchi S, Fabrizi G. Synthesis and functionalization of indoles
through palladium-catalyzed reactions. Chem Rev, 2011, 111: 215–
283; d) Oda Y, Matsuyama N, Hirano K, Satoh T, Miura M. Dehy-
drogenative synthesis of C3-azolylindoles via copper-promoted an-
7
a) Kawano T, Hirano K, Satoh T, Miura M. A new entry of amination
reagents for heteroaromatic C−H bonds: copper-catalyzed direct