The Journal of Organic Chemistry
ARTICLE
resulting frequencies were used for thermochemical calculations. Similar
’ REFERENCES
computational methodologies have been shown to be reliable for Dielsꢀ
(
(
1) Huc, I.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2106–2110.
2) Ramstrom, O.; Lehn, J.-M. Nat. Rev. Drug Discovery 2002,
49
Alder reactions involving furan and maleimide. Transition state searches
56
were performed using the QST2 method at the B3LYP/6-311G(d,p)
level and then refined by Berny optimization at the MP2/6-31+G(d)
and CBS-QB3 levels. Transition states were distinguished by having a
single imaginary vibrational frequency corresponding to the vibrational
mode that connects DielsꢀAlder adducts to their separated diene and
dienophile components. Gas-phase single-point electronic energies for
transition states were calculated at the MP2/6-31+G(d) level, with
vibrational analysis being carried out at the CBS-QB3 level for zero-
point and thermal corrections. Solvation free energies were calculated
1, 26–36.
(3) Lehn, J.-M.; Eliseev, A. V. Science 2001, 291, 2331–2332.
(4) Rowan, S. J.; Santrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.;
Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898–952.
(5) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.;
Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652–3711.
(
(
(
6) Lehn, J.-M. Angew. Chem., Int. Ed. 1990, 29, 1304–1319.
7) Lindsey, J. S. New J. Chem. 1991, 15, 153–180.
8) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. 1996, 35,
1
155–1196.
9) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100,
53–908.
57
utilizing the PCM reaction field model in acetonitrile (ε = 35.688).
Chemicals. Chemicals were obtained from commercial sources and
used as purchased. DielsꢀAlder adducts of unsubstituted as well as
derivatized furan and maleimide compounds were prepared according to
(
8
(
(
10) Grzybowski, B.; Whitesides, G. W. Science 2002, 295, 2418–2421.
11) See, for example: (a) Brady, P. A.; Bonar-Law, R. P.; Rowan,
3
8
literature procedures.
S. J.; Suckling, C. J.; Sanders, J. K. M. Chem. Commun. 1996, 319–320.
(b) Melson, G. A.; Busch, D. H. J. Am. Chem. Soc. 1964, 86, 213–217.
(c) Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002,
297, 590–593. (d) Fuchs, B.; Nelson, A.; Star, A.; Stoddart, J. F.; Vidal,
S. B. Angew. Chem., Int. Ed. 2003, 42, 4220–4224.
1
H NMR Spectroscopic Studies. Dynamic exchange reactions
1
were carried out directly in screw-cap NMR tubes. H NMR spectra
were obtained using a 300 MHz NMR spectrometer, and chemical shifts
are reported as parts per million (ppm) downfield from the signal of
(
(
12) Hubin, T. J.; Busch, D. H. Coord. Chem. Rev. 2000, 200, 5–52.
13) Albrecht, M. J. Inclusion Phenom. Macrocycl. Chem. 2000,
Me
4
Si. Equimolar amounts of an unsubstituted furanꢀmaleimide
DielsꢀAlder adduct and either N-methylmaleimide or 2-methylfuran
3
3
6, 127–151.
14) Wang, D. Y.; Mohwald, H. J. Mater. Chem. 2004, 14, 459–468.
were dissolved in 1.0 mL of CD CN in a screw-cap NMR tube to give a
3
(
0
.25 M solution. The top of the NMR tube was then wrapped tightly in
1
(15) Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. Rev. 2007,
6, 1705–1723.
Teflon tape. An initial H NMR spectrum was obtained at 298 K
immediately after sample preparation and taken as time = 0 h. The NMR
tube was then suspended in a stirred mineral oil bath kept at a constant
(
16) Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A. J. P.; Williams,
D. J. Angew. Chem., Int. Ed. 2001, 40, 1870–1875.
17) Leigh, D. A.; Lusby, P. J.; Teat, S. J.; Wilson, A. J.; Wong, J. K. Y.
Angew. Chem., Int. Ed. 2001, 40, 1538–1543.
18) (a) Williams, A. R.; Northrop, B. H.; Chang, T.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2006, 45, 6665–
669. (b) Northrop, B. H.; Aric ꢀo , F.; Tangchaivang, N.; Badji ꢀc , J. D.;
3
48 K, except when the sample was periodically removed from the oil
(
1
bath and cooled to room temperature and an H NMR spectrum was
obtained. Such monitoring of the dynamic exchange process initially
consisted of acquiring spectra at 1 h intervals, gradually ramping up to
longer time intervals between acquisitions. The integration of diagnostic
proton signals corresponding to different dynamic exchange products
was used to evaluate the extent of exchange as a function of time.
(
6
Stoddart, J. F. Org. Lett. 2006, 8, 3899–3902.
(19) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave,
G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308–1312.
(
20) Pentecost, C. D.; Chichak, K. S.; Peters, A. J.; Cave, G. W. V.;
Cantrill, S. J.; Stoddart, J. F. Angew. Chem., Int. Ed. 2007, 46, 218–222.
21) (a) C ^o t ꢀe , A. P.; Benin, A. L.; Ockwig, N. W.; O’Keeffe, M.;
’
ASSOCIATED CONTENT
(
Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166–1170. (b) El-Kaderi,
H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; C ^o t ꢀe , A. P.; Taylor, R. E.;
O’Keeffee, M.; Yaghi, O. M. Science 2007, 316, 268–272.
S
Supporting Information. Figures, tables, and text giving
b
1
time versus mole fraction plots for H NMR dynamic exchange
experiments, comparison of H NMR spectra from dilute (0.25 M,
1
(22) (a) Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed.
4
00 h equilibration) and concentrated (2.0 M, 24 h equilibration)
2
008, 47, 3450–3453. (b) Thomas, A. Angew. Chem., Int. Ed. 2010,
dynamic exchange reactions, NMR spectra of adducts 14 and 15,
Cartesian coordinates of all stationary points reported in this paper
and their absolute energies in hartrees, and the full author list for
ref 53. This material is available free of charge via the Internet at
http://pubs.acs.org.
4
9, 8328–8344 and references therein.
(23) (a) Tilford, R. W.; Gemmill, W. R.; zur Loye, H. C.; Lavigne, J. J.
Chem. Mater. 2006, 18, 5296–5301. (b) Tilford, R. W.; Mugavero, S. J.;
Pellechia, P. J.; Lavigne, J. J. Adv. Mater. 2008, 20, 2741–2746.
(24) (a) Spitler, E.; Dichtel, W. R. Nature Chem. 2010, 2, 672–677.
(
b) Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler,
E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011,
32, 228–231. (c) Spitler, E. K.; Giovino, M. R.; White, S. L.; Dichtel,
W. R. Chem. Sci. 2011, 2, 1588–1593.
25) (a) Christinat, N.; Scopelliti, R.; Severin, K. J. Org. Chem. 2007,
2, 2192–2200. (b) Christinat, N.; Scopelliti, R.; Severin, K. Angew.
’
AUTHOR INFORMATION
3
Corresponding Author
(
*E-mail: bnorthrop@wesleyan.edu.
7
Chem., Int. Ed. 2008, 47, 1848–1852. (c) Christinat, N.; Scopelliti, R.;
Severin, K. Chem. Commun. 2008, 3660–3662.
(
26) (a) Nitschke, J. R. Acc. Chem. Res. 2007, 40, 103–122.
b) Hutin, M.; Bernardinelli, G.; Nitschke, J. R. Chem. Eur. J. 2008,
4, 4585–4593. (c) Campbell, V. E.; de Hatten, X.; Delsuc, N.;
Kauffmann, B.; Huc, I.; Nitschke, J. R. Nature Chem. 2010, 2, 684–687.
27) Sauer, J.; Sustmann, R. Angew. Chem., Int. Ed., Engl. 1980, 19,
779–807.
(28) (a) Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt,
S. R.; Sheran, K.; Wudl, F. Science 2002, 295, 1698–1792. (b) Chem, X.;
’
ACKNOWLEDGMENT
(
1
We are grateful to the ACS PRF for financial support through a
research grant to B.H.N. and to the ACS Physical Division
Workshop for Undergraduate Students for a travel grant to R.C.B.
We thank Wesleyan University for computer time supported by
the NSF under Grant No. CNS-0619508. We thank Prof. George A.
Petersson for helpful discussions.
(
8
001
dx.doi.org/10.1021/jo201606z |J. Org. Chem. 2011, 76, 7994–8002