Month 2018
Functionalization of Quinazolin-4-ones Part 3: Synthesis, Structures Elucidation,
DNA-PK, PI3K, and Cytotoxicity of Novel 8-Aryl-2-morpholino-quinazolin-4-ones
Yield = 33%. R = 0.42 (chloroform–isopropanol 95:5). mp
= 2.7 Hz), 7.90–7.97 (m, 1H, H-16), 8.00 (d, 1H, H-5,
5
f
3
2
46–24 7°C. IR (KBr): 2960.3 (w, sp C-H st), 1671.7 (s,
J5–7 = 2.7 Hz), 8.32–8.38 (m, 2H, H-11, H-19), 11.45
ꢀ
1
1
13
C=O), 1587.3 (s, Ar) cm
.
H NMR (300 MHz,
(bs, 1H, NH) ppm. C NMR (75 MHz, DMSO-d , T = 3
6
DMSO-d , T = 340 K): δ = 3.54–3.60 (m, 8H, H-9, H-
40 K): δ = 44.7 (C-9), 65.1 (C-10), 118.6 (C-8), 120.7
(C-11/C-19), 121.6 (C-11/C-19), 122.3 (C-16), 124.0 (C-
12/C-13), 124.2 (C-17/C-18), 124.8 (C-5), 125.3 (C-4a,
C-6), 126.6 (C-17/C-18), 128.5 (C-12/C-13), 132.7 (C-
11a), 134.0 (C-7), 134.9 (C-14a), 136.4 (C-19a), 138.3
(C-14/C-16a), 138.7 (C-14/C-16a), 146.4 (C-8a), 150.1
(C-2), 161.8 (C-4) ppm. C H N O SCl (447.94): Calcd
6
10), 7.37 (tt, 1H, H-20, J20–19 = 7.2 Hz, J20–18 = 1.5 Hz),
7.44–7.54 (m, 2H, H-15, H-15), 7.62–7.72 (m, H-14, H-
16, H-19), 7.74 (d, 1H, H-7, J7–5 = 2.7 Hz), 7.91 (d, 1H,
H-5, J5–7 = 2.7 Hz), 7.97 (t, 1H, H-12, J
= J12–16 =
12–14
1
3
1.6 Hz), 11.43 (bs, 1H, NH) ppm. C NMR (75 MHz,
DMSO-d , T = 340 K): δ = 44.8 (C-9), 65.2 (C-10),
6
24 18 3 2
1
4
1
18.7 (C-8), 124.0 (C-5), 125.3 (C-14/C-16), 125.8 (C-
a), 126.3 (C-18), 127.0 (C-20), 127.9 (C-15), 128.2 (C-
2), 128.5 (C-19), 128.6 (C-14/C-16), 133.9 (C-7), 137.4
C 64.35, H 4.05, N 9.38; found. C 61.43, H 4.43, N 8.43
(monohydrate).
6-Chloro-2-morpholino-8-(thianthren-1-yl)quinazolin-4(1H)-
(
(
(
C-6), 137.7 (C-13), 139.4 (C-11), 139.9 (C-17), 146.1
C-8a), 150.0 (C-2), 161.9 (C-4) ppm. C H N O Cl
417.89): Calcd C 68.98, H 4.82, N 10.06; found. C
7.49, H 4.95, N 10.36 (monohydrate).
one (11k).
Crude 8-bromo-6-chloro-2-morpholino-
quinazolin-4(1H)-one (10) was reacted with 4-
dibenzothienylboronic acid according to “General
Procedure A: Extraction Method 1” to give 11k as an off
2
4 20 3 2
6
6-Chloro-8-(dibenzo[b,d]furan-4-yl)-2-morpholino-quinazolin-
white solid. Yield = 38%. R = 0.42 (chloroform–
f
4
(1H)-one (11i).
Crude 8-bromo-6-chloro-2-morpholino-
quinazolin-4(1H)-one (10) was reacted with
-(dibenzofuranyl) boronic acid according to “General
isopropanol 95:5). mp 330–331°C. IR (KBr): ν
3175.7
max
3
ꢀ1
(w, sp C-H st), 1666.7 (s, C=O), 1590.2 (s, Ar) cm
.
1
4
H NMR (300 MHz, DMSO-d , T = 330 K): δ = 3.38 (t,
6
Procedure A: Extraction Method 1” to give 11i as an off
4H, H-9, J9–10 = 4.6 Hz), 3.50 (t, 4H, H-10,
white solid. Yield = 16%. R = 0.36 (chloroform–isopropanol
J10–9 = 4.6 Hz), 7.24 (dt, 1H, H-17/H-18, J = 7.5 Hz,
J = 1.5 Hz), 7.28–7.36 (m, 3H, H-12, H-17/H-18, H-16/
H-19), 7.38 (t, 1H, H-13, J13–12 = J13–14 = 7.5 Hz), 7.56
(dd, 1H, H-16/H-19, J = 7.5 Hz, J = 1.5 Hz), 7.56 (d,
1H, H-7, J7–5 = 2.4 Hz), 7.62 (dd, 1H, H-14,
J14–13 = 7.5 Hz, J14–12 = 1.5 Hz), 7.98 (d, 1H, H-5,
f
3
9
5:5). mp 342–343°C. IR (KBr): νmax 3180.7 (w, sp C-H
ꢀ
1
1
st), 1656.6 (s, C=O), 1594.0 (s, Ar) cm . H NMR
(
300 MHz, DMSO-d , T = 340 K): δ = 3.34 (t, 4H, H-9,
6
J9–10 = 4.4 Hz), 3.45 (t, 4H, H-10, J10–9 = 4.4 Hz), 7.40 (dt,
1
1
H, H-18, J18–17 = J18–19 = 7.5 Hz, J18–16 = 1.2 Hz), 7.46 (t,
H, H-12, J12–11 = J12–13 = 7.5 Hz), 7.49 (m, 1H, H-17,
13
J5–7 = 2.4 Hz), 11/50 (bs, 1H, NH) ppm. C NMR
J17–18 = 7.5 Hz, J17–16 = 8.7 Hz, J17–19 = 1.5 Hz), 7.63–7.66
m, 2H, H-13, H-16), 7.84 (d, 1H, H-7, J7–5 = 2.7 Hz), 7.99
d, 1H, H-5, J5–7 = 2.7 Hz), 8.14 (dd, 1H, H-11,
J11–12 = 7.5 Hz, J11–13 = 1.2 Hz), 8.15 (ddd, 1H, H-19,
J19–18 = 7.5 Hz, J = 1.2 Hz, J19–16 = 0.6 Hz), 11.45 (bs,
(75 MHz, DMSO-d , T = 340 K): δ = 44.6 (C-9), 65.2
6
(
(
(C-10), 117.9 (C-8), 124.7 (C-7), 125.2 (C-4a), 127.0 (C-
13), 127.5 (C-17/C-18), 127.6 (C-17/C-18), 127.9 (C-14/
C-16/C-19), 127.9 (C-14/C-16/C-19), 128.4 (C-12), 129.4
(C-16/C-19), 133.9 (C-5), 134.0 (C-11), 135.3 (C-16a/C-
19a), 135.4 (C-16a/C-19a), 135.6 (C-6/C-11a/C-14a),
136.9 (C-6/C-11a/C-14a), 138.3 (C-6/C-11a/C-14a), 147.0
(C-8a), 150.1 (C-2), 161.8 (C-4) ppm. C H N O S Cl
19–17
13
1
H, NH) ppm. C NMR (75 MHz, DMSO-d , T = 340 K):
6
δ = 45.1 (C-9), 65.5 (C-10), 111.6 (C-16), 119.0 (C-11a),
120.5 (C-11), 121.1 (C-19), 122.4 (C-4a), 122.6 (C-12),
123.1 (C-18), 123.8 (C-8, C-19a), 125.0 (C-5), 125.8 (C-6),
127.5 (C-17), 129.5 (C-13), 133.5 (C-14), 135.1 (C-7), 147.2
24 18 3 2 2
(480.00): Calcd C 60.05, H 3.78, N 8.75; found. C
57.85, H 4.02, N 8.88 (monohydrate).
(
C-8a), 150.5 (C-14a), 153.5 (C-2), 155.5 (C-16a), 162.4
6-Chloro-2-morpholino-8-(naphthalene-1-yl)quinazolin-4(1H)-
one (11l). Crude 8-bromo-6-chloro-2-morpholino-quinazolin-
(C-4) ppm. C H N O Cl (431.87): Calcd C 66.75, H 4.20,
24 18 3 3
N 9.73; found. C 63.06, H 4.16, N 8.85 (monohydrate).
4(1H)-one (10) was reacted with 1-naphthaleneboronic acid
according to “General Procedure A: Extraction Method 1” to
6
-Chloro-8-(dibenzo[b,d]thiophen-4-yl)-2-morpholino-
quinazolin-4(1H)-one (11j).
Crude 8-bromo-6-chloro-2-
morpholino-quinazolin-4(1H)-one (10) was reacted with
-(dibenzothienyl) boronic acid according to “General
give 11l as an off white solid. Yield = 16%. R = 0.32
f
(chloroform–isopropanol 95:5). mp 295–296°C. IR (KBr):
3
ꢀ1
4
2954.4 (w, sp C-H st), 1663.1 (s, C=O), 1595.3 (s, Ar) cm .
1
Procedure A: Extraction Method 1” to give 11j as an off
H NMR (300 MHz, DMSO-d , T = 360 K): δ = 3.15–3.22
6
white solid. Yield = 21%. R = 0.39 (chloroform–
(m, 4H, H-9), 3.40 (t, 4H, H-10, J10–9 = 4.8 Hz), 7.35–7.51
f
isopropanol 95:5). mp 334–335°C. IR (KBr): ν
2969.0
(m, 4H, H-14, H-15, H-16, H-17), 7.55 (t, 1H, H-13, J13–12 =
J13–14 = 7.5 Hz), 7.60 (d, 1H, H-7, J7–5 = 2.4 Hz), 7.92–7.95
max
3
ꢀ1
(
w, sp C-H st), 1675.4 (m, C=O), 1596.9 (s, Ar) cm
.
1
H NMR (300 MHz, DMSO-d , T = 340 K): δ = 3.38 (t,
(m 2H, H-12, H-18), 8.00 (d, 1H, H-5, J = 2.4 Hz), 11.29
6
5–7
13
4
4
7
H, H-9, J9–10 = 4.8 Hz), 3.49 (t, 4H, H-10, J10–9
.8 Hz), 7.46–7.54 (m of ABX, 2H, H-17, H-18), 7.57–
.62 (m of ABX, 2H, H-12, H-13), 7.79 (d, 1H, H-7, J7–
=
(bs, 1H, NH) ppm. C NMR (75 MHz, DMSO-d6,
T = 340 K): δ = 44.5 (C-9), 65.0 (C-10), 118.3 (C-8), 124.2
(C-5), 124.8 (C-13), 125.1 (C-16/C-17), 125.2 (C-16/C-17),
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet