Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
3
cm /g (2.5% Alq3@MFU-4l(Zn)-Br), suggesting the successful 11. Z. Zhuang, C. Peng, G. Zhang, H. Yang, J. Yin and H. Fei,
Angew. Chem., Int. Ed., 2017, 56, 14411D-1O4I4: 1106..1039/D0CC07320B
2. C. Peng, Z. Zhuang, H. Yang, G. Zhang and H. Fei, Chem. Sci.,
encapsulation of Alq3 in the porosity of MFU-4l(Zn)-Br (Fig.
S23 and S24, ESI†). Upon 365 nm UV irradiation, the MOFs
exhibit tunable white-light emission with CIE coordinates from
1
2
018, 9, 1627-1633.
1
1
3. J. Yin, H. Yang and H. Fei, Chem. Mater., 2019, 31, 3909-3916.
4. C. Peng, X. Song, J. Yin, G. Zhang and H. Fei, Angew. Chem.,
Int. Ed., 2019, 58, 7818-7822.
(
0.19, 0.23) for MFU-4l(Zn)-Br to (0.27, 0.36) for 2.5%
Alq3@MFU-4l(Zn)-Br (Fig. 4 and Fig. S25, ESI†). The latter
is close to (0.33, 0.33) of the pure white light, corresponding to 15. X. Song, C. Peng, X. Xu, J. Yin and H. Fei, Chem. Commun.,
2
020, 56, 10078-10081.
CCT of 8321 K. PL excitation of Alq3 is centered at 462 nm
and resides well in the broadband emission of MFU-4l(Zn)-Br,
suggesting the electron transfer process between Alq3 and
MFU-4l(Zn)-Br (Fig. S26, ESI†). Again, the process is further
confirmed by the longer PL lifetime of MFU-4l(Zn)-Br with
encapsulated Alq3 increasing from 1.7 wt% to 2.5 wt% (Table
S2 and Fig. S27, ESI†).
1
1
1
6.L. Zhou, J. F. Liao, Z. G. Huang, X. D. Wang, H. Y. Chen and D.
B. Kuang, Angew. Chem., Int. Ed., 2019, DOI:
1
7.L. J. Xu, H. Lin, S. Lee, C. Zhou, M. Worku, M. Chaaban, Q. He,
A. Plaviak, X. Lin, B. Chen, M.-H. Du and B. Ma, Chem. Mater.,
2020, 32, 4692-4698.
8. I. Spanopoulos, I. Hadar, W. Ke, P. Guo, S. Sidhik, M.
Kepenekian, J. Even, A. D. Mohite, R. D. Schaller and M. G.
Kanatzidis, J. Am. Chem. Soc., 2020, 142, 9028-9038.
9. Y. Liu, Y. Jing, J. Zhao, Q. Liu and Z. Xia, Chem. Mater., 2019,
0.1002/anie.201907503.
In conclusion, we report three new members of intrinsic
6+
broadband light-emissive MOFs based on 0-D [Zn X ]
5
4
1
2
2
2
(
X=Cl/Br/I) SBUs, overcoming the lead toxicity problems in
3
1, 3333-3339.
many lead halide-based white-light phosphors. In addition, the
chemical robust nature of MFU-4l(Zn) achieves undiminished
photoemission upon continuous UV irradiation under ambient
condition (~60% RH). The open porosity of MFU-4l(Zn)
provide an excellent platform to encapsulate Alq3 as a second
emission center to further tune the PL. We believe this study
significantly advances the advantages of MOFs (e.g. porosity,
stability and non-toxic metal) into the field of lead halide self-
trapped white-light emitters.
0. Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev., 2012, 112,
1126-1162.
1. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. T. Houk,
Chem. Soc. Rev., 2009, 38, 1330-1352.
2. C. Y. Sun, X. L. Wang, X. Zhang, C. Qin, P. Li, Z. M. Su, D. X.
Zhu, G. G. Shan, K. Z. Shao, H. Wu and J. Li, Nat. Commun.,
2
013, 4, 2717.
2
3. T. Mondal, S. Mondal, S. Bose, D. Sengupta, U. K. Ghorai and S.
K. Saha, J. Mater. Chem. C, 2018, 6, 614-621.
24. Y. Cui, B. Chen and G. Qian, Coordin. Chem. Rev., 2014, 273-
74, 76-86.
2
This work was supported by grants from the National
Natural Science Foundation of China (21971197 and
2
5. M. S. Wang, S. P. Guo, Y. Li, L. Z. Cai, J. P. Zou, G. Xu, W. W.
Zhou, F. K. Zheng and G. C. Guo, J. Am. Chem. Soc., 2009, 131,
1
6. D. F. Sava, L. E. Rohwer, M. A. Rodriguez and T. M. Nenoff, J.
Am. Chem. Soc., 2012, 134, 3983-3986.
51772217),
the
Shanghai
Rising-Star
Program
3572-13573.
(
No.20QA1409500), the Recruitment of Global Youth Experts
2
by China and the Science & Technology Commission of
Shanghai Municipality (19DZ2271500).
27.G. Zhang, J. Yin, X. Song and H. Fei, Chem. Commun., 2020, 56,
325-1328.
1
2
8. D. Denysenko, M. Grzywa, M. Tonigold, B. Streppel, I. Krkljus,
M. Hirscher, E. Mugnaioli, U. Kolb, J. Hanss and D. Volkmer,
Chem. Eur. J., 2011, 17, 1837-1848.
Conflicts of interest
There are no conflicts to declare.
2
3
9. T. D. Creason, T. M. McWhorter, Z. Bell, M. H. Du and B.
Saparov, Chem. Mater., 2020, 32, 6197-6205.
0.C. Sun, Y. H. Guo, Y. Yuan, W. X. Chu, W. L. He, H. X. Che, Z.
H. Jing, C. Y. Yue and X. W. Lei, Inorg. Chem., 2020, 59, 4311-
Notes and references
4
319.
1
2
. E. F. Schubert and J. K. Kim, Science, 2005, 308, 1274-1278.
. S. Pimputkar, J. S. Speck, S. P. DenBaars and S. Nakamura, Nat.
Photonics, 2009, 3, 180-182.
3
1. D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi,
D. Meggiolaro, F. De Angelis, C. Soci and A. Petrozza, J. Am.
Chem. Soc., 2017, 139, 39-42.
2. A. Yangui, R. Roccanova, T. M. McWhorter, Y. Wu, M. H. Du
and B. Saparov, Chem. Mater., 2019, 31, 2983-2991.
3. L. Mao, P. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even, R.
D. Schaller, C. C. Stoumpos and M. G. Kanatzidis, J. Am. Chem.
Soc., 2018, 140, 13078-13088.
4. C. Zhou, H. Lin, Y. Tian, Z. Yuan, R. Clark, B. Chen, L. J. van
de Burgt, J. C. Wang, Y. Zhou, K. Hanson, Q. J. Meisner, J. Neu,
T. Besara, T. Siegrist, E. Lambers, P. Djurovich and B. Ma,
Chem. Sci., 2018, 9, 586-593.
3
4
. S. Nakamura, Angew. Chem., Int. Ed., 2015, 54, 7770-7788.
. M. Shang, C. Li and J. Lin, Chem. Soc. Rev., 2014, 43, 1372-
3
3
1
386.
5
6
. Y. W. Zhao, F. Q. Zhang and X. M. Zhang, ACS Appl. Mater.
Interfaces, 2016, 8, 24123-24130.
. L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M.
Li, J. Zhang, R. Vajtai, P. M. Ajayan and M. Wu, Sci. Adv., 2020,
3
3
6
, eabb6772.
7
8
9
1
. E. R. Dohner, E. T. Hoke and H. I. Karunadasa, J. Am. Chem.
Soc., 2014, 136, 1718-1721.
. E. R. Dohner, A. Jaffe, L. R. Bradshaw and H. I. Karunadasa, J.
Am. Chem. Soc., 2014, 136, 13154-13157.
. J. Li, J. Wang, J. Ma, H. Shen, L. Li, X. Duan and D. Li, Nat.
Commun., 2019, 10, 806.
0. Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J.
van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R.
Clark, T. Siegrist and B. Ma, Nat. Commun., 2017, 8, 14051.
5. J. Lee, E. S. Koteles and M. O. Vassell, Phys. Rev. B, 1986, 33,
5
512-5516.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins