Supramolecular Control of Two-Dimensional Phase Behavior
1198 1206
1658C (decomp); 1H NMR(300 MHz, TFA
CD3OD): d 2.70 (t,
tunneling current. STM experiments were performed with a Discoverer
scanning tunneling microscope (Topometrix Inc., Santa Barbara, CA)
along with an external pulse/function generator (Model HP8111A), with
negative sample bias. Tips were electrochemically etched from Pt/Ir wire
(80%/20%, diameter 0.2 mm) in a 2n KOH/6n NaCN solution in water.
3J(H,H) 6.9 Hz, 8H), 1.01 (m, 8H), 0.67(m, 32H), 0.23 ppm (s, 6H);
13C NMR(75.48 MHz, TFA D2O): d 152.5, 35.6, 24.4, 22.8, 22.7, 22.6,
22.3, 21.9, 19.7, 19.4, 15.5, 6.0 ppm; IR(KBr): nÄ 3336, 1614, 1576 cmÀ1
;
C28H58N4O2 (482.79): m/z: 482; elemental analysis (%) calcd: C 69.66, H
12.11, N 11.60; found: C 69.53, H 12.02, N 11.52.
The experiments were repeated in several sessions with different tips to
check for reproducibility and to avoid artifacts. Different settings for the
tunneling current and the bias voltage were used, ranging from 0.3 nA to
1.0 nA and À10 mV to À1.5 V, respectively. All STM images contain raw
data and are not subjected to any manipulation or image processing.
1-Dodecyl-3-[14-(3-dodecylureido)tetradecyl]urea (C14-12): This was syn-
thesized as described for C14-6, starting from 1,14-diaminotetradecane
(200 mg, 0.8 mmol) and dodecylisocyanate (400 mg, 1.9 mmol). Yield:
0.34 g (65%); m.p. 159 1608C (decomp); 1H NMR(300 MHz, TFA
CD3OD): d 2.71 (t, 3J(H,H) 6.6 Hz, 8H), d 1.02 (m, 8H), 0.67 (m, 56H),
0.23 ppm (s, 6H); 13C NMR(75.48 MHz, TFA D2O,): d 36.1, 25.9, 23.5,
23.3, 22.9, 22.6, 20.4, 16.5, 7.0 ppm; IR(KBr): nÄ 3336, 1611, 1574 cmÀ1
;
Acknowledgement
elemental analysis (%) calcd for C40H82N4O2 (651.12): C 73.79, H 12.69, N
8.60; found: C 73.60, H 12.64, N 8.37.
The authors thank the DWTC, through IUAP-V-03, the Institute for the
promotion of innovation by Sciences and Technology in Flanders (IWT).
ESF SMARTON made the Leuven Groningen collaboration possible.
S.D.F. is a postdoctoral fellow of the Fund for Scientific Research-Flanders.
J.v.E. gratefully acknowledges the Royal Academy of the Netherlands for a
fellowship. M.L. is an Erasmus student from Karlstad University (Sweden).
B.V. is an Erasmus student from University of Groningen (The Nether-
lands).
1-Dodecyl-3-[15-(3-dodecylureido)pentadecyl]urea (C15-12): This was
synthesized as described for C14-6, starting from 1,15-diaminopentadecane
(200 mg, 0.8 mmol) and dodecylisocyanate (400 mg, 1.9 mmol). Yield:
0.38 g (71%); m.p. 162 1648C (decomp); 1H NMR(300 MHz, TFA
CD3OD): d 2.71 (t, 3J(H,H) 6.6 Hz, 8H), 1.02 (m, 8H), 0.67 (m,
58H), 0.22 ppm (s, 6H); 13C NMR(75.48 MHz, TFA D2O): d 152.7,
35.7, 23.0, 22.9, 22.8, 22.4, 22.1, 19.9, 16.0, 6.4 ppm; IR(KBr): nÄ 3336, 1611,
1574 cmÀ1; C41H84N4O2 (665.14): m/z: 665.8; elemental analysis (%) calcd C
74.04, H 12.73, N 8.42; found: C 73.88, H 12.69, N 8.45.
1-Dodecyl-3-[16-(3-dodecylureido)hexadecyl]urea (C16-12): This was syn-
thesized as described for C14-6, starting from 1,16-diaminohexadecane
(200 mg, 0.8 mmol) and dodecylisocyanate (400 mg, 1.9 mmol). Yield:
[1] Handbook of Microlithography, Micromachining, and Microfabrica-
tion (Ed.: P. Rai-Choudhury), SPIE Optical Engineering Press,
London, 1997.
[2] Y. Xia, G. M. Whitesides, Angew. Chem. 1998, 110, 568 594; Angew.
Chem. Int. Ed. Engl. 1998, 37, 550 575.
430 mg (78%); m.p. 164 1658C (decomp); 1H NMR(300 MHz, TFA
CD3OD): d 2.71 (t, 3J(H,H) 6.6 Hz, 8H), 1.02 (m, 8H), 0.67 (m, 60H),
0.23 ppm (s, 6H); 13C NMR(75.48 MHz, TFA D2O): d (152.7), 35.5,
25.2, 22.9, 22.8, 22.4, 22.3, 22.1, 19.9, 16.0, 6.3 ppm; IR(KBr): nÄ 3331,
1612, 1569 cmÀ1; elemental analysis (%) calcd for C41H84N4O2 (679.17): C
74.28, H 12.76, N 8.25; found: C 74.09, H 12.81, N 8.13.
[3] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1982, 49,
57 61.
[4] G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930 933.
[5] Y.-T. Kim, A. J. Bard, Langmuir 1992, 8, 1096 1102.
[6] C. B. Ross, L. Sun, R. M. Crooks, Langmuir 1993, 9, 632 636.
[7] G.-Y. Liu, S. Xu, Y. Qian, Acc. Chem. Res. 2000, 33, 457 466.
[8] W. T. M¸ller, D. L. Klein, T. Lee, J. Clarke, P. L. McEuen, P. G.
Schultz, Science 1995, 268, 272 273
[9] R. Maoz, S .R. Cohen, J. Sagiv, Adv. Mat. 1999, 11, 55 61.
[10] Comprehensive supramolecular chemistry (Eds: J. L. Atwood, J. E. D.
Davies, D. D. MacNicol, F. Vˆgtle), Pergamon, New York, 1996.
[11] A. Ulman, Chem. Rev. 1996, 96, 1533 1554, and references therein.
[12] C. D. Bain, G. M. Whitesides, J. Am. Chem. Soc. 1988, 110, 6560 6561.
[13] P. A. Lewis, Z. J. Donhauser, B. A. Mantooth, R. K. Smith, L. A.
Bumm, K. F. Kelly, P. S. Weiss, Nanotechnology 2001, 12, 231 237, and
references therein.
1-Isocyanatopentadecane: Palmitoyl chloride (5 g, 0.018 mol) was dis-
solved in p-xylene (40 mL). Sodium azide (1.5 g, 0.023 mol) was added. The
reaction mixture was heated at reflux for 2 h under a continuous flow of
nitrogen, after which conversion to the isocyanate was complete. The hot
reaction mixture was filtered to remove insoluble residue. The solvent was
removed in vacuo to yield the product as a semisolid material. Yield: 4.5 g
(0.018 mol, 99%); 1H NMR(300 MHz, CDCl 3): d 3.22 (t, 3J(H,H)
6.6 Hz, 2H), 1.55 (m, 2H), 1.21 (m, 24H), 0.82 ppm (t, 3H); 13C NMR
(75.48 MHz, CDCl3, TMS): d 134.0, 42.1, 31.2, 30.5, 29.9, 29.8, 29.4, 28.8,
26.4, 22.1, 20.2, 16.0, 13.5 ppm.
1-Pentadecyl-3-[8-(3-pentadecylureido)octyl]urea (C15-8): This was syn-
thesized as described for C14-6, starting from 1-isocyanato-pentadecane
(0.4 g, 1.6 mmol) and 1,8-diaminooctane (100 mg, 0.7 mmol) in hot toluene
(20 mL). Yield: 380 mg (85%); m.p. 167 1698C (decomp); 1H NMR
(300 MHz, TFA CD3OD): d 2.70 (t, 3J(H,H) 6.6 Hz, 8H), 1.02 (m,
8H), 0.66 (m, 56H), 0.22 ppm (s, 6H); 13C NMR(75.48 MHz, TFA D2O):
d (152.7), 36.3, 26.1, 23.7, 23.6, 23.5, 23.4, 23.1, 22.9, 22.8, 20.6, 20.5,16.7,
7.3 ppm; IR(KBr): nÄ 3336, 1611, 1576 cmÀ1; C40H82N4O2 (651.12): m/z:
651.6; elemental analysis (%) calcd: C 73.79, H 12.69, N 8.60; found: C
73.41, H 12.57, N 8.35.
[14] K. Tamada, M. Hara, H. Sasabe, W. Knoll, Langmuir 1997, 13, 1558
1566.
[15] S. J. Stranick, S. V. Atre, A. N. Parikh, M. C. Wood, D. L. Allara, N.
Winograd, P. S. Weiss, Nanotechnology 1996, 7, 438 442.
[16] R. K. Smith, S. M. Reed, P. A. Lewis, J. D. Monnell, R .S. Clegg, K. F.
Kelly, L. A. Bumm, J. E. Hutchison, P. S. Weiss, J. Phys. Chem. B 2001,
105, 1119 1122.
[17] T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko,
Nature 2001, 413, 619 621.
1-Pentadecyl-3-[9-(3-pentadecylureido)nonyl]urea (C15-9): This was syn-
thesized as described for C14-6, starting from 1-isocyanato-pentadecane
(0.35 g, 1.4 mmol) and 1,9-diaminononane (100 mg, 0.65 mmol) in hot
toluene (20 mL). Yield: 390 mg (90%); m.p. 161 1638C; 1H NMR
(300 MHz, TFA CD3OD): d 2.72 (t, 3J(H,H) 6.6 Hz, 8H), 1.03 (m,
8H), 0.67 (m, 58H), 0.24 ppm (s, 6H); 13C NMR(75.48 MHz, TFA D2O):
d (153.1), 35.9, 25.8, 23.5, 23.4, 23.3, 23.2, 23.1, 22.8, 22.7, 20.2,16.4,
7.0 ppm; IR(KBr): nÄ 3336, 1611, 1574 cmÀ1; C41H84N4O2 (665.14): m/z:
665.6; elemental analysis calcd: C 74.04, H 12.73, N 8.42; found: C 73.68, H
12.75, N 8.39.
[18] M. Bˆhringer, K. Morgenstern, W.-D. Schneider, R. Berndt, F. Mauri,
A. De Vita, R. Car, Phys. Rev. Lett. 1999, 83, 324 327.
[19] J. Weckesser, A. De Vita, J. V. Barth, C. Cai, K. Kern, Phys. Rev. Lett.
2001, 87, 6101 6104.
[20] A. Dmitriev, N. Lin, J. Weckesser, J. V. Barth, K. Kern, J. Phys. Chem.
B 2002, 106, 6907 6912.
[21] M. O. Lorenzo, C. J. Baddeley, C. Muryn, R. Raval, Nature 2000, 404,
376 379.
[22] G. C. McGonical, R. H. Bernhardt, D. J. Thomson, Appl. Phys. Lett.
1990, 57, 28 30.
STM: Prior to imaging, all compounds under investigation were dissolved
in 1-octanol and a drop of this solution was applied to a freshly cleaved
surface of highly oriented pyrolytic graphite (HOPG). The molar ratio in
solution of the mixtures of T2 and CX-Y was 1:1. The STM images were
acquired in the variable-current mode (constant height) under ambient
conditions with the tip immersed in the liquid. In the acquired STM images,
white corresponds to the highest and black to the lowest measured
[23] J. P. Rabe, S. Buchholz, Science 1991, 253, 424 427.
[24] J. Frommer, Angew. Chem. 1992, 104, 1325 1357; Angew. Chem. Int.
Ed. Engl. 1992, 31, 1298 1328.
[25] D. M. Cyr, B. Venkataraman, G. W. Flynn, Chem. Mater. 1996, 8,
1600 1615.
[26] L. C. Giancarlo, G. W. Flynn, Annu. Rev. Phys. Chem. 1998, 49, 297
336.
Chem. Eur. J. 2003, 9, No. 5
¹ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0947-6539/03/0905-1205 $ 20.00+.50/0
1205