COMPLEXES OF A SCHIFF BASE WITH Cu(II), Co(II) AND Cd(II)
7
terms of g// (1.52) and g⊥ (2.46) contributions that could be This point obviously necessitates further investigation that is
attributed to some symmetry of the paramagnetic site.
presently in progress.
DISCUSSION
REFERENCES
Schiff base ligands similar to the one we have synthesized
have already been described in the literature but they either lack
the N(Et)2 moiety,[15,16] or their central arrangement is differ-
ent.[17] Structure and properties of transition metal complexes
of these ligands have been reported.
As evidenced by thermal analysis, the presence of metal
atoms in our complexes dramatically reduces the stability of
the formed moieties, contrary to the observations of Averseng
et al.[20] on similar systems.
The electrochemistry of the pure ligand is irreversible. Elec-
trochemical measurements also show that the complexes are not
stable and that they are very sensitive to reduction and oxidation
steps. It is even possible that in the case of copper and cobalt, the
metal is deposited on the electrode during reductive processes.
From the literature, all the structures clearly indicate that the
metallic ion is bound by two nitrogen and two oxygen atoms
(N2O2). In some cases, 1:1 complexes are formed, in agreement
with the close proximity of the two NO groups.[17]. On the other
hand, complexes of Zn[15] and of Cu and Co[16] have a structure
involving two metallic ions and two ligands. In the latter case,
the two NO binding sites belong to different ligands.
1. Djebbar, S.S.; Benali, B.O.; Deloume, J.P. Transition Met. Chem. 1998, 23,
443.
2. Hamada, Y.J. IEEE Trans. Electron Devices 1997, 44, 1208.
3. Ramesh, R.; Sivagamasundari, M. Synth. React. Inorg. Met.-Org. Chem.
2003, 33, 899.
4. Wu, J.C.; Tang, N.; Liu, W.S.; Tan, M.Y.; Chan, A.S.C. Chin. Chem. Lett.
2001, 12, 757.
5. Chatterjee, D.; Mitra, A. J. Coord. Chem. 2004, 57, 175.
6. Minu, G.; Bhowon, H.; Wah, L.K.; Dosieah, A.; Ridana, M.; Ramalingum,
O.; Lacour, D. Synth. React. Inorg. Metal-Org. Chem. 2004, 34, 1.
7. Liu, C.M.; Xiong, R.G.; You, X.Z.; Liu, Y.J.; Cheung, K.K. Polyhedron
1996, 15, 4565.
8. Khandar, A.A.; Hosseini-Yazdi, S.A.; Zarei, S.A. Inorg. Chim. Acta 2005,
358, 3211.
9. Zhenlan, Q.; Shenhao, C.; Ying, L.; Xuegui, C. Corr. Sci. 2002, 44, 703.
10. Gilmartin, M.A.T.; Hart, J.P. Analyst 1995, 120, 1029.
11. Kannan, S.; Pillai, M.R.A.; Droege, P.A.; Jurisson, S.; Barnes, C.L. Inorg.
Chim. Acta 1997, 254, 397.
12. Go¨lcu¨, A.; Tu¨mer, M.; Demirelli, H.; Wheatley, R.A. Inorg. Chim. Acta
2005, 358, 1785.
13. Anthonysamy, A.; Balasubramanian, S. Inorg. Chem. Commun. 2005, 8,
908.
14. Ramachandraiah, A.; Rao, P.N.; Ramaiah, M. Ind. J. Chem. 1989, 28A, 309.
15. Yoshida, N.; Ichikawa, K.; Shiro, M. J. Chem Soc. Perkin Trans. 2000, 2,
17.
16. Kruger, P.E.; Martin, N.; Nieuwenhuyzen, M. J. Chem Soc. Dalton Trans.
2001, 1966.
17. Averseng, F.; Lacroix, P.G.; Malfant, I.; Dahan, F.; Nakatani, K. J. Mater.
Chem. 2000, 10, 1013.
18. Cai, Y.-P.; Su, C.-Y.; Xu, A.-W.; Kang, B.-S.; Tong, Y.-X.; Liu, H.-Q.; Jie,
S. Polyhedron 2001, 20, 657.
19. Aranha, P.E.; Souza, J.M.; Romera, S.; Ramos, L.A.; dos Santos, M.P.;
Dockal, E.R.; Cavalheiro, E.T.G. Thermochim. Acta 2007, 453, 9.
20. Averseng, F.; Lacroix, P.G.; Malfant, I.; Pe´risse´, N.; Lepetit, C.; Nakatani,
N. Inorg. Chem. 2001, 40, 3797.
The chemical formula of the various complexes can be
defined by analogy with that of complexes having a simi-
lar structure, as described in the literature.[42,44,45] Thus, it is
possible to postulate the following formulas for the various
metal complexes C35H42Cl2Cu2N4O4, C35H42Cl2CoN4O3, and
C35H40CdN4O3. They are in good agreement with the elemental
analysis (calculated values, Table 1). The elemental analysis of
complexes of Co and Cd is also in complete agreement with a
2:2 complex,[16] although it is not possible to differentiate ML
from M2L2 based only on the composition. The major differ-
ence is found in the case of Cu complexes, for which the analysis
would point towards a M2L1 structure. This is rather surprising
since the same ligand was used and the preparation/purification
methods were identical in all cases studied.
21. Elmer, C.A.; Abdul, M. Can. J. Chem. 1975, 53, 939.
22. Joseph, M.; Suni, V.; Kurup, M.R.P.; Nethaji, M.; Kishore, A.; Bhat, S.G.
Polyhedron 2004, 23, 3069.
23. Adams, H.; Bastida, R.; de Blas, A.; Carnota, M.; Fenton, D.E.; Macias,
A.; Rodriguez, A.; Rodriguez-Blas, T. Polyhedron 1997, 16, 567.
24. Radecka-Paryzek, W.; Patroniak, V. Polyhedron 1994, 13, 2125.
25. Liu, S.; Yang, L.W.; Rettig, S.J.; Orvig, C. Inorg. Chem. 1993, 32,
2773.
Finally, the existence of Cu2L complexes with similar ligands
seems unique and is currently under investigation.
˙
26. Ilhan, H.; Temel, M.; Aslanog˘lu, A.; Kilic¸, E.T. J. Chin. Chem. Soc. 2006,
53, 1027.
¨
˙
˙
27. C¸ akir, U.; Temel, H.; Ilhan, S.; Ug˘ras¸, H.I. Spectrosc. Lett. 2003, 36,
CONCLUSION
429.
28. Tas¸, E.; Aslanog˘lu, M.; Ulusoy, M.; Temel, H.J. Coord. Chem. 2004, 57,
677.
29. Agrawal, S.K.; Tutlani, D.R.; Gupta, R.; Hajela, S.K. Inorg. Chim. Acta
1987, 129, 257.
We have described three new metal complexes ob-
tained with 4,4ꢁ-bis[(4-diethylaminosalicylaldehyde)diphenyl
methane]diimine (H2L), which behaves as a N2O2 tetradentate
ligand toward Co(II) and Cd(II) ions. In every case, the coordi-
nation occurs through the N azomethine atoms and the oxygen
atoms of the phenolic hydroxyl. The complex of Cu(II) is bin-
uclear but copper ions do not interact. Thermal studies showed
that the ligand is more stable than the corresponding complexes.
It is quite striking that the presence of N(Et)2 functions may
have such a strong impact on the stability of the complexes.
30. Saha, N.; Sinha, S. Indian J. Chem. 1990, 29A, 292.
31. Kilic¸, A.; Tas¸, E.; Deveci, B.; Yilmaz, I. Polyhedron 2007, 26, 4009.
32. Kala, U.L.; Suma, S.; Kurup, M.R.P.; Krishnan, S.; John, R.P. Polyhedron
2007, 26, 1427.
˙
33. Ilhan, S.; Temel, H.; S¸ekerci, M. Synt. React. Inorg. Met-Org. Chem. 2002,
32, 1625.
34. Temel, H.; Ziyadanog˘ullari, B.; Alp, H.; Aydin, I.; Aydin, F.; Ilhan, S. Russ.
J. Coord. Chem. 2006, 32, 282.