Paper
Photochemical & Photobiological Sciences
Fstd
sens
initl
ν
0 Φ sΔ ens ¼ ΦΔ ꢀ F
std
ꢀ
.
spectroscopic properties of ruthenium(II)-2,2′:6′,2″-terpyri-
dine coordination triades, New J. Chem., 1992, 16, 855–867.
6
6
sens
std
ν
initl
2
+
1 (a) P. Müller and K. Brettel, [Ru(bpy)3] as a reference in 69 K. Mohamed and D. Padma, Spectral studies on pyridi-
transient absorption spectroscopy: differential absorption
coefficients for formation of the long-lived MLCT excited
nium hexafluorophosphate, Spectrochim. Acta, Part A, 1985,
41, 725–728.
3
state, Photochem. Photobiol. Sci., 2012, 11, 632–636; 70 (a) N. V. Ignat’ev, P. Barthen, A. Kucheryna, H. Willner
(
b) D. K. Liu, B. S. Brunschwig, C. Creutz and N. Sutin, For-
and P. Sartori, A Convenient Synthesis of Triflate Anion
Ionic Liquids and Their Properties, Molecules, 2012, 17,
5319–5338; (b) G. J. P. Britovsek, J. England and
A. J. P. White, Non-heme Iron(II) Complexes Containing
Tripodal Tetradentate Nitrogen Ligands and Their Appli-
cation in Alkane Oxidation Catalysis, Inorg. Chem., 2005,
44, 8125–8134.
mation of electronically excited products in electron-trans-
fer reactions: reaction of polypyridine complexes of cobalt
(I) and ruthenium(II) in acetonitrile, J. Am. Chem. Soc.,
1
986, 108, 1749–1755.
6
6
2 (a) K. Bergmann and C. T. O’Konski, A Spectroscopic Study
of Methylene Blue Monomer, Dimer, and Complexes with
Montmorillonite, J. Phys. Chem., 1963, 67, 2169–2177; 71 R. Hogg and R. G. Wilkins, 57. Exchange studies of certain
(
b) C. Lee, Y. W. Sung and J. W. Park, Multiple Equilibria of
chelate compounds of the transitional metals. Part VIII.
2,2′,2″-terpyridine complexes, J. Chem. Soc., 1962, 341–350.
72 (a) M. A. Harvey, S. Baggio, A. Ibañez and R. Baggio, Three
zinc(II) complexes presenting a ZnN6 chromophore and
with peroxodisulfate as the counter-ion, Acta Crystallogr.,
Sect. C: Cryst. Struct. Commun., 2004, 60, m375–m381;
(b) F. Dumitru, E. Petit, A. van der Lee and M. Barboiu,
Homo- and Heteroduplex Complexes Containing Terpyri-
Phenothiazine Dyes in Aqueous Cyclodextrin Solutions,
J. Phys. Chem. B, 1999, 103, 893–898.
3 M. Montalti, A. Credi, L. Prodi and T. M. Gandolfi, Hand-
book of photochemistry, CRC/Taylor & Francis, Boca Raton,
3
rd edn, 2006.
6
6
4 D. Wöhrle, W.-D. Stohrer and M. W. Tausch, Photochemie,
Wiley-VCH, Weinheim, 2005.
5 K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun,
V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, Basis Set
Exchange: A Community Database for Computational
Sciences, J. Chem. Inf. Model., 2007, 47, 1045–1052.
2
+
dine-Type Ligands and Zn , Eur. J. Inorg. Chem., 2005,
2005, 4255–4262; (c) A. M. Goforth, M. A. Tershansy,
M. D. Smith, L. Peterson, J. G. Kelley, W. J. I. DeBenedetti
and H.-C. Zur Loye, Structural Diversity and Thermochro-
mic Properties of Iodobismuthate Materials Containing
d-Metal Coordination Cations: Observation of a High Sym-
6
6 (a) P. J. Hay and W. R. Wadt, Ab initio effective core poten-
tials for molecular calculations. Potentials for K to Au
including the outermost core orbitals, J. Chem. Phys., 1985,
metry [Bi I ] Anion and of Isolated I− Anions, J. Am.
2
−
3
11
8
2, 299–310; (b) P. J. Hay and W. R. Wadt, Ab initio effective
core potentials for molecular calculations. Potentials for 73 (a) B. Maity, S. Gadadhar, T. K. Goswami, A. A. Karande
main group elements Na to Bi, J. Chem. Phys., 1985, 82,
84–298; (c) P. J. Hay and W. R. Wadt, Ab initio effective
Chem. Soc., 2011, 133, 603–612.
and A. R. Chakravarty, Impact of metal on the DNA photo-
cleavage activity and cytotoxicity of ferrocenyl terpyridine
3d metal complexes, Dalton Trans., 2011, 40, 11904–11913;
(b) N. W. Alcock, P. R. Barker, J. M. Haider, M. J. Hannon,
C. L. Painting, Z. Pikramenou, E. A. Plummer, K. Rissanen
and P. Saarenketo, Red and blue luminescent metallo-
supramolecular coordination polymers assembled through
π–π interactions, J. Chem. Soc., Dalton Trans., 2000, 1447–
1462; (c) Y. H. Lee, E. Kubota, A. Fuyuhiro, S. Kawata,
J. M. Harrowfield, Y. Kim and S. Hayami, Synthesis, struc-
ture and luminescence properties of Cu(II), Zn(II) and
Cd(II) complexes with 4′-terphenylterpyridine, Dalton
Trans., 2012, 41, 10825–10831; (d) P. Wang, Z. Li, G.-C. Lv,
H.-P. Zhou, C. Hou, W.-Y. Sun and Y.-P. Tian, Zinc(II)
complex with terpyridine derivative ligand as “on–off” type
fluorescent probe for cobalt(II) and nickel(II) ions, Inorg.
Chem. Commun., 2012, 18, 87–91; (e) X. Chen, Q. Zhou,
Y. Cheng, Y. Geng, D. Ma, Z. Xie and L. Wang, Synthesis,
structure and luminescence properties of zinc(II) com-
plexes with terpyridine derivatives as ligands, J. Lumin.,
2007, 126, 81–90; (f) E. Kubota, Y. H. Lee, A. Fuyuhiro,
S. Kawata, J. M. Harrowfield, Y. Kim and S. Hayami, Syn-
thesis, structure, and luminescence properties of arylpyri-
dine-substituted terpyridine Zn(II) and Cd(II) complexes,
Polyhedron, 2013, 52, 435–441.
2
core potentials for molecular calculations. Potentials for
the transition metal atoms Sc to Hg, J. Chem. Phys., 1985,
8
2, 270–283.
6
7 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaus-
sian 09 (Revision C.1), 2009.
6
8 E. C. Constable, A. M. W. Cargill Thompson, D. A. Tochter
and M. A. M. Daniels, Synthesis, characterisation and
394 | Photochem. Photobiol. Sci., 2014, 13, 380–396
This journal is © The Royal Society of Chemistry and Owner Societies 2014