Paper
Catalysis Science & Technology
H2-TPR can estimate the length of the perimeter interface
between a 2D WO3 monolayer domain and γ-Al2O3. This
revealed a positive correlation between the length of the W–Al
perimeter interface and the catalytic activity of Pt/WO3/Al2O3
catalyst for the hydrogenolysis of glycerol to 1,3-propanediol.
This result indicated that the W–(OH)–Al site at the perimeter
interface between a WO3 domain and γ-Al2O3 plays an impor-
tant role for the hydrogenolysis of glycerol to form 1,3-
propanediol.
16 E. Iglesia, D. G. Barton, S. L. Soled, S. Miseo, J. E.
Baumgartner, W. E. Gates, G. A. Fuentes and G. D. Meitzner,
Stud. Surf. Sci. Catal., 1996, 101, 533–542.
17 I. E. Wachs, Colloids Surf., A, 1995, 105, 143–149.
18 M. A. Vuurman, D. J. Stufkens, A. Oskam and I. E. Wachs,
J. Mol. Catal., 1992, 76, 263–289.
19 W. Zhou, N. Soultanidis, H. Xu, M. S. Wong, M. Neurock,
C. J. Kiely and I. E. Wachs, ACS Catal., 2017, 7, 2181–2198.
20 W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong
and I. E. Wachs, Nat. Chem., 2009, 1, 722–728.
21 W. Lin, A. A. Herzing, C. J. Kiely and I. E. Wachs, J. Phys.
Chem. C, 2008, 112, 5942–5951.
22 E. I. Ross-Medgaarden, W. V. Knowles, T. Kim, M. S. Wong, W.
Zhou, C. J. Kiely and I. E. Wachs, J. Catal., 2008, 256, 108–125.
23 I. E. Wachs, Y. Chen, J.-M. Jehng, L. E. Briand and T.
Tanaka, Catal. Today, 2003, 78, 13–24.
24 I. E. Wachs, Catal. Today, 1996, 27, 437–455.
25 A. M. Turek and I. E. Wachs, J. Phys. Chem., 1992, 96,
5000–5007.
26 T. Kitano, T. Shishido, K. Teramura and T. Tanaka, Catal.
Today, 2014, 226, 97–102.
27 T. Kitano, T. Shishido, K. Teramura and T. Tanaka,
ChemPhysChem, 2013, 14, 2560–2569.
28 T. Kitano, T. Shishido, K. Teramura and T. Tanaka, J. Phys.
Chem. C, 2012, 116, 11615–11625.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This study was partially supported by the Program for Ele-
ments Strategy Initiative for Catalysts & Batteries (ESICB).
This work was also supported in part by Grants-in-Aid for Sci-
entific Research (B) (Grant 17H03459) and Scientific Research
on Innovative Areas (Grant 17H06443) commissioned by
MEXT of Japan. The XAFS experiments at SPring-8 were
conducted with the approval (No. 2018A1647) of the Japan
Synchrotron Radiation Research Institute (JASRI).
Notes and references
29 T. Shishido, T. Kitano, K. Teramura and T. Tanaka, Top.
Catal., 2010, 53, 672–677.
30 T. Shishido, T. Kitano, K. Teramura and T. Tanaka, Catal.
Lett., 2009, 129, 383–386.
1 H. Hattori, Appl. Catal., A, 2015, 504, 103–109.
2 H. Nair, M. J. Liszka, J. E. Gatt and C. D. Baertsch, J. Phys.
Chem. C, 2008, 112, 1612–1620.
3 S. L. Soled, G. B. McVicker, L. L. Murrell, L. G. Sherman,
N. C. Dispenziere, S. L. Hsu and D. Waldman, J. Catal.,
1988, 111, 286–295.
4 T. Yamamoto, Y. Tanaka, T. Matsuyama, T. Funabiki and S.
Yoshida, J. Phys. Chem. B, 2001, 105, 1908–1916.
5 M. Hino and K. Arata, J. Chem. Soc., Chem. Commun.,
1988, 1259–1260.
6 A. H. Karim, S. Triwahyono, A. A. Jalil and H. Hattori, Appl.
Catal., A, 2012, 433–434, 49–57.
7 R. W. Gosselink, D. R. Stellwagen and J. H. Bitter, Angew.
Chem., Int. Ed., 2013, 52, 5089–5092.
31 T. Kitano, S. Okazaki, T. Shishido, K. Teramura and T.
Tanaka, Catal. Today, 2012, 192, 189–196.
32 T. Kitano, S. Okazaki, T. Shishido, T. Teramura and T.
Tanaka, Catal. Lett., 2011, 40, 1332–1334.
33 T. Kitano, S. Okazaki, T. Shishido, T. Teramura and T.
Tanaka, J. Mol. Catal. A: Chem., 2013, 371, 21–28.
34 T. Kitano, T. Hayashi, T. Uesaka, T. Shishido, K. Teramura
and T. Tanaka, ChemCatChem, 2014, 6, 2011–2020.
35 R. A. Sheldon, Green Chem., 2014, 16, 950–963.
36 A. M. Ruppert, K. Weinberg and R. Palkovits, Angew. Chem.,
Int. Ed., 2012, 51, 2564–2601.
8 Y. Liu, C. Luo and H. Liu, Angew. Chem., Int. Ed., 2012, 51,
3249–3253.
37 M. Pagliaro and M. Rossi, The Future of Glycerol, RSC
Publishing, Cambridge, 2008.
9 R. Foo, T. Vazhnova, D. B. Lukyanov, P. Millington, J.
Collier, R. Rajaram and S. Golunski, Appl. Catal., B,
2015, 162, 174–179.
10 M. Kantcheva, M. Milanova and S. Mametsheripov, Catal.
Today, 2012, 191, 12–19.
11 S. Kwon, P. Deshlahra and E. Iglesia, J. Catal., 2018, 364,
228–247.
12 J. Macht, T. Carr and E. Iglesia, J. Am. Chem. Soc., 2009, 131,
6554–6565.
38 A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107,
2411–2502.
39 Y. Nakagawa, Y. Tamura and K. Tomishige, Res. Chem.
Intermed., 2018, 44, 3897–3903.
40 K. Tomishige, Y. Nakagawa and M. Tamura, Green Chem.,
2017, 19, 2876–2924.
41 Y. Nakagawa, M. Tamura and K. Tomishige, J. Mater. Chem.
A, 2014, 2, 6688–6702.
42 J. ten Dam and U. Hanefeld, ChemSusChem, 2011, 18,
1017–1034.
43 C. H. Zhou, J. N. Beltramini, Y. X. Fan and G. Q. Lu, Chem.
Soc. Rev., 2008, 37, 527–549.
13 K. Chen, A. T. Bell and E. Iglesia, J. Catal., 2002, 209, 35–42.
14 C. D. Baertsch, S. L. Soled and E. Iglesia, J. Phys. Chem. B,
2001, 105, 1320–1330.
15 D. G. Barton, S. L. Soled, G. D. Meitzner, G. A. Fuentes and
E. Iglesia, J. Catal., 1999, 181, 57–72.
44 J. ten Dam and U. Hanefeld, ChemCatChem, 2013(5),
497–505.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2019