The Journal of Organic Chemistry
NOTE
To the resulting white suspension was added a solution of NiCl2 DME
’ REFERENCES
3
(24mg, 0.11 mmol) and rac-trans-N,N0-dimethyl-1,2-cyclohexanediamine
(4, 19 mg, 0.13 mmol) in dioxane (1 mL), followed by 2-bromoethoxy-
(tert-butyl)dimethylsilane28 (263 mg, 1.10 mmol). The vial was capped,
and the mixture was stirred at rt for 24 h, after which it was passed
through a pad of silica gel eluting with Et2O/pentane (1:1, 20 mL) and
concentrated in vacuo. The product was purified by flash chromatogra-
phy (3% Et2O/pentane) to afford 3a as a colorless oil (250 mg, 85%):
TLC Rf = 0.3 (5% Et2O/pentane); 1H{2H} NMR (600 MHz, CDCl3) δ
7.27 (t, J = 7.5 Hz, 2H), 7.19ꢀ7.15 (m, 3H), 3.62 (t, J = 6.4 Hz, 2H), 2.60
(d, J = 6.3 Hz, 1H), 1.64 (q, J = 7.0 Hz, 1H), 1.55 (q, J = 6.8 Hz, 2H), 0.89
(1) (a) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004. (b) Beller,
M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed.; Wiley-
VCH: Weinheim, Germany, 2004. (c) Magano, J.; Dunetz, J. R. Chem.
Rev. 2011, 111, 2177–2250.
(2) For a recent example of alkylꢀalkyl cross-coupling reactions in
target-oriented synthesis, see: Griggs, N. D.; Phillips, A. J. Org. Lett.
2008, 10, 4955–4957.
(3) For a representative sample of recent advances in palladium-
catalyzed alkylꢀaryl cross-coupling reactions, see: Molander, G. A.;
Canturk, B. Angew. Chem., Int. Ed. 2009, 48, 9240–9261.
(4) Reviews of alkyl cross-coupling reactions: (a) Jana, R.; Pathak,
T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417–1492. (b) Rudolph, A.;
Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656–2670. (c) Frisch,
A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674–688.
(5) Representative examples of nickel-catalyzed alkyl cross-coupling
reactions: (a) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602–
9603. (b) Singh, S. P.; Terao, J.; Kambe, N. Tetrahedron Lett. 2009,
50, 5644–5646. (c) Ren, P; Vechorkin, O.; von Allmen, K.; Scopelliti, R.;
Hu, X. J. Am. Chem. Soc. 2011, 133, 7084–7095. (d) Phapale, V. B.;
Bu~nuel, E.; García-Iglesias, M.; Cꢀardenas, D. J. Angew. Chem., Int. Ed.
2007, 46, 8790–8795.
(6) Mechanistic studies of transmetalation of alkylboranes to
palladium: (a) Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63,
458–460. (b) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461–
470.
(7) For example, stereochemical studies of transmetalation of alkyl-
boranes to palladium catalysts have facilitated stereospecific cross-
coupling reactions of these reagents: (a) Imao, D.; Glasspoole, B. W.;
Laberge, V. S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024–5025.
(b) Ohmura, T.; Awano, T.; Suginome, M. J. Am. Chem. Soc. 2010, 132,
13191–13193.
(s, 9H), 0.04 (s, 6H); 2H{1H} NMR (92 MHz, CHCl3) δ 2.62, 1.67; 13
C
NMR (125 MHz, CDCl3) δ 142.8, 128.6, 128.5, 125.8, 63.2, 35.4 (t,
1JCD = 19.5 Hz), 32.5, 27.4 (t, 1JCD = 18.9 Hz), 26.2, 18.6, ꢀ5.1; IR (thin
film) 3025, 2954, 2858, 2150, 1105 cmꢀ1; HRMS (TOF MS ES+) m/z
calcd for C16H26D2OSi (M + H)+ 267.2113, found 267.2121.
anti-3,4-Dideuterio-4-phenylbutoxy(tert-butyl)dimethylsilane (3b).
In a N2 atmosphere glovebox, styrene 1b (160 mg, 1.51 mmol) was
added to a suspension of 9-BBN dimer (183 mg, 0.750 mmol dimer) in
dioxane (0.4 mL). The flask was sealed with a septum and removed from
the glovebox. A N2 inlet was introduced, and the mixture was stirred at
60 °C for 1 h. The mixture was then cooled to rt and returned to the
glovebox. The clear solution was transferred to a vial, and dioxane was
added to produce a total volume of 3.0 mL (0.5 M). A portion of the
resulting solution of 2b (0.80 mL, 0.40 mmol, 0.5 M) was added to a
mixture of KOt-Bu (30 mg, 0.27 mmol) and i-BuOH (0.041 mL, 0.44
mmol) in a 6 mL vial. The solution was stirred vigorously for 30 min. To
the resulting white suspension was added a solution of NiCl2 DME (4.8 mg,
3
0.022 mmol) and rac-trans-N,N0-dimethyl-1,2-cyclohexanediamine (4, 3.7 mg,
0.026 mmol) in dioxane (0.2 mL), followed by 2-bromoethoxy(tert-bu-
tyl)dimethylsilane (52 mg, 0.22 mmol). The vial was capped, and the mixture
was stirred at rt for 24 h, after which it was passed through a pad of silica gel
eluting with Et2O/pentane (1:1, 20 mL) and concentrated in vacuo. The
product was purified by flash chromatography (3% Et2O/pentane) to afford
3b as a colorless oil (42 mg, 71%): TLC Rf =0.3(5%Et2O/pentane); 1H{2H}
NMR (600 MHz, CDCl3) δ 7.27 (t, J = 7.6 Hz, 2H), 7.19ꢀ7.15 (m, 3H),
3.62(t, J= 6.5 Hz, 2H), 2.60 (d, J=9.1Hz, 1H), 1.64(q, J= 8.1 Hz, 1H), 1.55
(q, J = 6.8 Hz, 2H), 0.89 (s, 9H), 0.04 (s, 6H); 2H{1H} NMR (92 MHz,
CHCl3) δ 2.62, 1.67; 13C NMR (125 MHz, CDCl3) δ 142.8, 128.6, 128.5,
125.8, 63.2, 35.4 (t, 1JCD = 18.9 Hz), 32.5, 27.4 (t, 1JCD = 19.5 Hz), 26.2, 18.6,
ꢀ5.1; IR (thin film) 3026, 2922, 2910, 2150, 1110 cmꢀ1; HRMS (TOF MS
ES+) m/z calcd for C16H26D2OSi (M + H)+ 267.2113, found 267.2117.
(8) Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am.
Chem. Soc. 2011, 133, 389–391.
(9) Loss of stereochemistry from the alkyl halide has enabled the
development of enantioselective, stereoconvergent cross-coupling
methodologies. For representative examples, see: (a) Lu, Z.; Wilsily,
A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154–8157. (b) Owsten, N. A.;
Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908–11909. (c) Saito, B.; Fu,
G. C. J. Am. Chem. Soc. 2008, 130, 6694–6695.
(10) In contrast, oxidative addition of alkyl halides and tosylates to
palladium proceeds with inversion of configuration: (a) Becker, Y.; Stille,
J. K. J. Am. Chem. Soc. 1978, 100, 838–844. (b) Netherton, M. R.; Fu,
G. C. Angew. Chem., Int. Ed. 2002, 41, 3910–3912.
(11) Stille, J. K.; Cowell, A. B. J. Organomet. Chem. 1977, 124, 253–
261.
(12) (a) Jones, G. D.; McFarland, C.; Anderson, T. J.; Vicic, D. A.
J. Chem. Soc., Chem. Commun. 2005, 4211–4213. (b) Anderson, T. J.;
Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100–8101.
(13) Lin, X.; Phillips, D. L. J. Org. Chem. 2008, 73, 3680–3688.
(14) Schofield, M. H.; Halpern, J. Inorg. Chim. Acta 2003,
345, 353–358.
’ ASSOCIATED CONTENT
Supporting Information. 1H and 13C NMR spectra for
S
b
all new compounds, Figure S1, and Table S1. This material is
(15) Grignard reagents racemize above 0 °C: (a) Davies, A. G.;
Roberts, B. P. J. Chem. Soc. B. 1969, 317–321. (b) Whitesides, G. M.;
Roberts, J. M. J. Am. Chem. Soc. 1965, 87, 4878–4888.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: erjarvo@uci.edu.
(16) Alkylzinc halides racemize slowly at room temperature:Guijarro,
A.; Rieke, R. D. Angew. Chem., Int. Ed. 2000, 39, 1475–1479.
(17) H€olzer, B.; Hoffmann, R. W. Chem. Commun. 2003, 732–733.
(18) Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79–85.
(19) For recent development of highly diastereoselective palladium-
catalyzed Negishi couplings that proceed via equilibration of diastere-
omeric alkylzinc reagents, see: (a) Thaler, T.; Haag, B.; Gavryushin, A.;
Schober, K.; Hartmann, E.; Gschwind, R. M.; Zipse, H.; Mayer, P.;
Knochel, P. Nat. Chem. 2010, 2, 125–130. (b) Seel, S.; Thaler, T.;
Takatsu, K.; Zhang, C.; Zipse, H.; Straub, B. F.; Mayer, P.; Knochel, P.
J. Am. Chem. Soc. 2011, 133, 4774–4777.
’ ACKNOWLEDGMENT
This work was supported by the University of California,
Irvine, Academic Senate Council on Research, Computing, and
Library Resources. B.L.H.T. is grateful for a University of
California Chancellor’s Fellowship. Dr. Philip Dennison is
acknowledged for assistance with NMR experiments.
7575
dx.doi.org/10.1021/jo201263r |J. Org. Chem. 2011, 76, 7573–7576