Paper
RSC Advances
7
D. Astruc, F. Lu and J. Ruiz Aranzaes, Angew. Chem., Int. Ed.,
2005, 44, 7852.
8
9
Z. L. Wang, Appl. Phys. A: Mater. Sci. Process., 2007, 88, 7.
K. Fries and G. Finck, Ber. Dtsch. Chem. Ges., 1908, 41, 4271.
1
1
0 S. Paul and M. Gupta, Synthesis, 2004, 1789.
1 G. A. Olah, M. Arvanaghi and V. V. Krishnamurthy, J. Org.
Chem., 1983, 48, 3359.
Scheme 3 Schematic representation of the reaction mechanism in
the presence of ZnO as catalysts.
1
2 V. Rozenberg, T. Danilova, E. Sergeeva, E. Vorontsov,
Z. Starikova, K. Lysenko and Y. Belokon, Eur. J. Org. Chem.,
2000, 3295.
1
1
1
1
1
1
1
2
2
3 A. Commarieua, W. Hoelderich, J. A. Laffitte and
M. P. Dupont, J. Mol. Catal. A: Chem., 2002, 182–183, 137.
4 M. Kidwai, in Green Chemistry–Environmentally Benign
Approaches, InTech, Europe, Croatia, 2012, ch. 6.
cation. The aromatic compound, then, attacks the alkyl cation,
selectively, at the para position, via an electrophilic aromatic
substitution. Deprotonation regenerates aromaticity and
Brønsted acid work-up regenerate the Lewis acid catalyst
provided with the p-hydroxyaryl ketonic product. A plausible
mechanism of the reaction in the presence of ZnO as catalysts is
depicted in Scheme 3.
5 S. Kobayashi, M. Moriwaki and I. Hachiya, Chem. Commun.,
34
1995, 1527.
6 J. H. Clark, M. G. Dekamin and F. M. Moghaddam, Green
Chem., 2002, 4, 366.
7 H. W. Kouwenhoven, R. Prins and A. Vogt, Appl. Catal., A,
4
. Conclusion
1995, 123, 37.
8 J. Kato, H. Kakehata, Y. Maekawa and T. Yamashita, Chem.
Commun., 2006, 4498.
9 B. M. Khadilkar and V. R. Madyar, Synth. Commun., 1999, 7,
In conclusion, the present methodology based on the formation
of o-xylene-in-water emulsion droplets could offer a viable
platform for the synthesis of submicrometer-sized ZnO assem-
blies. These hollow and template-free assemblies could be
envisaged as greener catalysts in Fries rearrangement for the
conversion of phenolic ester to p-hydroxyaryl carbonyl
compound with high turnover frequency. It is anticipated that
the strategy of preparing hollow ZnO assemblies could be
utilized as a landscape to the self-assembly of nanobuilding
units of other transition metal oxides at the uid interfaces to
explore the application of these light-weight materials in
nanotechnology.
1195.
0 R. H. Jitendra, J. N. Susheel and M. S. Manikrao, Tetrahedron
Lett., 2001, 42, 1979.
1 A. I. Vogel, in Textbook of Practical Organic Chemistry, ed. B. S.
Furniss, A. Hannaford, P. W. G. Smith and A. R. Tatchel, 5th
edn, 1996.
2
2
2 A. P. Alivisatos, Science, 1996, 271, 933.
3 M. L. Kahn, T. Cardinal, B. Bousquet, M. Monge, V. Jubera
and B. Chaudret, ChemPhysChem, 2006, 7, 2392.
4 W. H. Binder, Angew. Chem., Int. Ed., 2005, 44, 5172.
5 M. Y. Ge, H. P. Wu, L. Niu, J. F. Liu, S. Y. Chen, P. Y. Shen,
Y. W. Zeng, Y. W. Wang, G. Q. Zhang and J. Z. Jiang, J.
Cryst. Growth, 2007, 305, 162.
2
2
Acknowledgements
We gratefully acknowledge nancial support from DST, New
Delhi (Project no. SR/FT/CS-68/2010).
26 M. Goano, F. Bertazzi, M. Penna and E. Bellotti, J. Appl. Phys.,
2007, 102, 083709.
27 M. Andres Verges, A. Mifsud and C. J. Serena, J. Chem. Soc.,
Faraday Trans., 1990, 86, 959.
References
2
2
8 F. Zaera, Chem. Phys. Lett., 1985, 121, 464.
1
E. Katz, A. N. Shipway and I. Willner, in Nanoscale Materials,
ed. L. M. Liz-Marzan and V. P. Kamat, Kluwer, Norwell, 2003,
pp. 317–343.
9 A. K. Boal, F. Ilham, J. E. De Rouchey, T. Thurn-Albrecht,
T. P. Russel and V. M. Rotello, Nature, 2004, 404, 746.
0 D. Nykypanchuk, M. M. Maye, D. van der Lelie and O. Gang,
Nature, 2008, 451, 549.
3
3
3
3
3
2
3
A. B ¨o ker, J. He, T. Emrick and T. P. Russell, So Matter, 2007,
3
, 1231.
G. Martino, in 12th International Congress on Catalysis
Studies in Surface Science and Catalysis Series, Vol. 130), ed.
1 H. Jie, S. Genping and G. Rong, Adv. Mater., 2006, 18, 3140–
3144.
(
2 W. Kemp, in NMR in Chemistry: A Multinuclear Introduction,
New York, 1988, pp. 141–145.
3 J. March, in Advanced Organic Chemistry, John Wiley & Sons,
Chichester, 3rd edn, 1985, S. 499ff.
4 M. Guisne and G. Perot, in The Fries Rearrangement, ed. R. A.
Sheldon and H. Bekkum, New York, 2001, pp. 211–215.
A. Corma, F. V. Melo, S. Mendioroz and J. L. G. Fierro,
Elsevier, Amsterdam, 2000, p. 83.
4
5
A. J. Gellman and N. Shukla, Nat. Mater., 2009, 8, 87.
G. Schmid, in Nanoscale Materials in Chemistry, ed. K. J.
Klabunde, Wiley Interscience, New York, 2001, pp. 15–59.
H. H. Kung, in Transition Metal Oxides: Surface Chemistry and
Catalysis, Elsevier, Amsterdam, 2nd edn, 1991.
6
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 41780–41785 | 41785