Angewandte
Chemie
heteromolecular system, however, intermolecular interac-
tions appear to overrule the influence of the substrate
reconstruction, since there is no apparent preference for
either PTCDI or BDATB locating at fcc or hcp areas. This
finding can be explained by the significant energy penalty of a
gap in the hydrogen-bonding sequence (> 2 0.37 eV, see the
Supporting Information) compared to the small electronic
potential energy difference (ca. 0.092 eV[15]) between fcc and
hcp regions. Figure 3b highlights the intramolecular features
already detectable on the larger scale images. The corre-
sponding model in Figure 3c clarifies the structure that is
stabilized by the targeted triple hydrogen-bonding pattern
along the wire axis.
A further lowering of the surface coverage to 0.15 ML
leads to single-row bicomponent wires decorating the step
edges (Figure 3d). In these single-row wires, the alternating
order of PTCDI and BDATB along the wire axis is
significantly lower than for the double-row wires; the average
defect-free wire length is on the order of 10 nm for single-row
wires and 30 nm for double-row wires (see the Supporting
Information). Single-row wires are also significantly less
straight than double-row wires because of the increased
presence of homomolecular pairs, which give rise to the
previously described canted structures. Therefore, we con-
clude that the presence of a second row stabilizes the ordering
within the molecular wires, possibly as a consequence of some
degree of cooperativity in the hydrogen-bonding interac-
tions.[1f,16] This observation reinforces the idea that lateral
adsorbate–adsorbate interactions play a non-negligible role.
Nevertheless, there are still areas where the periodic order is
preserved also for single-row bicomponent wires (Figure 3d).
To get a further understanding of the experimental
observations, we performed molecular mechanics calculations
at the AMBER level of theory for homo- and heteromolec-
ular pairs (see the Supporting Information).[17] The exper-
imentally determined canted configurations are confirmed to
be the most stable ones for homomolecular pairs, and the
calculations rationalize the observed preference for hetero-
versus homomolecular formation which underlies the forma-
tion of the bicomponent wire: The three hydrogen bonds
between PTCDI and BDATB are significantly stronger than
the two hydrogen bonds between homomolecular BDATB
and PTCDI pairs.
Keywords: adsorption · hydrogen bonds · nanostructures ·
scanning probe microscopy · self-assembly
.
[1] a) J.-M. Lehn, Supramolecular Chemistry, Concepts and Per-
spectives, VCH, Weinheim, 1995; b) D. N. Reinhoudt, M. Crego-
Calama, Science 2002, 295, 2403; c) T. Steiner, Angew. Chem.
2002, 114, 50; Angew. Chem. Int. Ed. 2002, 41, 48; d) M. W.
Hosseini, Acc. Chem. Res. 2005, 38, 313; e) P. Gamez, J. Reedijk,
Eur. J. Inorg. Chem. 2006, 29; f) L. J. Prins, D. N. Reinhoudt, P.
Timmerman, Angew. Chem. 2001, 113, 2446; Angew. Chem. Int.
Ed. 2001, 40, 2382.
[2] For a recent review, see J. V. Barth, G. Costantini, K. Kern,
Nature 2005, 437, 671.
[3] a) M. de Wild, S. Berner, H. Suzuki, H. Yanagi, D. Schlettwein,
S. Ivan, A. Baratoff, H.-J. Guentherodt, T. A. Jung, ChemPhys-
Chem 2002, 3, 881; b) D. Bonifazi, H. Spillmann, A. Kiebele, M.
de Wild, P. Seiler, F. Cheng, H.-J. Gfflntherodt, T. Jung, F.
Diederich, Angew. Chem. 2004, 116, 4863; Angew. Chem. Int.
Ed. 2004, 43, 4759; c) S. De Feyter, A. Miura, S. Yao, Z. Chen, F.
Würthner, P. Jonkheijm, A. P. H. J. Schenning, E. W. Meijer,
F. C. De Schryver, Nano Lett. 2005, 5, 77; d) J. C. Swarbrick,
B. L. Rogers, N. R. Champness, P. H. Beton, J. Phys. Chem. B
2006, 110, 6110; e) J. Ma, B. L. Rogers, M. J. Humphry, D. J.
Ring, G. Goretzki, N. R. Champness, P. H. Beton, J. Phys. Chem.
B 2006, 110, 12207.
[4] a) J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness,
P. H. Beton, Nature 2003, 424, 1029; b) C. Bobisch, Th. Wagner,
A. Bannani, R. Möller, J. Chem. Phys. 2003, 119, 9804; c) H.
Ohtani, R. J. Wilson, S. Chiang, C. M. Mate, Phys. Rev. Lett.
1988, 60, 2398; d) B. Xu, Ch. Tao, W. G. Cullen, J. E. Reutt-
Robey, E. D. Williams, Nano Lett. 2005, 5, 2207; e) S. Xu, M.
Dong, E. Rauls, R. Otero, T. R. Linderoth, F. Besenbacher,
Nano Lett. 2006, 6, 1434.
[5] a) T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S.
Mashiko, Nature 2001, 413, 619; b) R. Otero et al., Angew.
Chem. 2004, 116, 2144; Angew. Chem. Int. Ed. 2004, 43, 2095;
c) J. V. Barth, J. Weckesser, C. Cai, P. Günter, L. Bürgi, O.
Jeandupeux, K. Kern, Angew. Chem. 2000, 112, 1285; Angew.
Chem. Int. Ed. 2000, 39, 1230; d) J. V. Barth, J. Weckesser, G.
Trimarchi, M. Vladimirova, A. De Vita, C. Cai, H. Brune, P.
Günter, K. Kern, J. Am. Chem. Soc. 2002, 124, 7991; e) Q. Chen,
N. V. Richardson, Nat. Mater. 2003, 2, 324; f) T. Kawai, H.
Tanaka, T. Nakagawa, Surf. Sci. 1997, 386, 124; g) M. Böhringer,
K. Morgenstern, W.-D. Schneider, R. Berndt, F. Mauri, A.
De Vita, R. Car, Phys. Rev. Lett. 1999, 83, 324; h) D. L. Keeling,
N. S. Oxtoby, C. Wilson, M. J. Humphry, N. R. Champness, P. H.
Beton, Nano Lett. 2003, 3, 9.
[6] a) G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto,
D. N. Chin, M. Mammen, D. M. Gordon, Acc. Chem. Res. 1995,
28, 37; b) G. M. Whitesides, J. P. Mathias, C. T. Seto, Science
1991, 254, 1312; c) D. C. Sherrington, K. A. Taskinen, Chem.
Soc. Rev. 2001, 30, 83.
Strong and highly directional hydrogen-bonding networks
are not only of fundamental importance in nature, but their
efficiency in assisting electron-transfer processes makes them
increasingly appealing for technological application inspired
by biomimetic principles.[18] We have demonstrated that the
formation of specific 1D hydrogen-bonding networks and
their long-range growth can be controlled by a rational design
of complementary building blocks for 1D multitopic hydro-
gen bonding and the choice of an appropriate template
surface. The resulting superlattice of single- and double-row
heteromolecular wires exhibits an almost constant wire-to-
wire separation over extended surface areas.
[7] S. Rousset, V. Repain, G. Baudot, Y. Garreau, J. Lecoeur, J.
Phys. Condens. Matter 2003, 15, S3363.
[8] a) S. Clair, S. Pons, A. P. Seitsonen, H. Brune, K. Kern, J. V.
Barth, J. Phys. Chem. B 2004, 108, 14585; b) M. Eremtchenko,
D. Bauer, J. A. Schaefer, F. S. Tautz, New J. Phys. 2004, 6, 4.
[9] a) X. Chen, E. R. Frank, R. J. Hamers, J. Vac. Sci. Technol. B
1996, 14, 1136; b) J. I. Pascual, J. J. Jackiw, K. F. Kelly, H.
Conrad, H.-P. Rust, P. S. Weiss, Phys. Rev. B 2000, 62, 12632;
c) M. Vladimirova, M. Stengel, A. De Vita, A. Baldereschi, M.
Böhringer, K. Morgenstern, R. Berndt, W.-D. Schneider, Euro-
phys. Lett. 2001, 56, 254; d) A. Tamai, W. Auwärter, C. Cepek, F.
Baumberger, T. Gerber, J. Osterwalder, Surf. Sci. 2004, 566–568,
633; e) W. Xiao, P. Ruffieux, K. Ait-Mansour, O. Gröning, K.
Palotas, W. A. Hofer, P. Gröning, R. Fasel, J. Phys. Chem. B
Received: October 4, 2006
Revised: December 8, 2006
Published online: February 2, 2007
Angew. Chem. Int. Ed. 2007, 46, 1814 –1818
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1817