above for UiO-67(Zr). In addition, this Zr-MOF shows a
storage capacity for CH4 which is much higher than other
conventional adsorbents such as the activated carbon (AC)
Maxsorb13a and the zeolite 13X,13b thus UiO-67(Zr) is particularly
promising for such an application.
support of the Beijing Nova (2008B15), ‘‘Hubert Curien Cai
Yuanpei’’ (24038XC) programs and Natural Science Foundation
(21136001) is also greatly appreciated.
Notes and references
The situation slightly differs for the CO2 capture with UiO-68(Zr)
showing the highest adsorption capacity (333 cm3 (STP) cmꢀ3
1 S. Ma and H.-C. Zhou, Chem. Commun., 2010, 46, 44.
)
2 (a) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald,
E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev.,
2012, 112, 724; (b) G. Ferey, C. Serre, T. Devic, G. Maurin,
´
H. Jobic, P. L. Llewellyn, G. De Weireld, A. Vimont, M. Daturi
and J.-S. Chang, Chem. Soc. Rev., 2011, 40, 550.
among these five Zr-MOFs which considerably exceeds the
performances of the usual AC and zeolites as emphasized in
Table 1. Such an exceptionally high adsorption uptake has been
reported in other existing MOFs. However, some of them
suffer from severe drawbacks such as the Zn(II)-based solids like
MOF-5, MOF-177, MOF-205 and UMCM-2 for which the
structures built up from a Zn-dicarboxylate connectivity undergo
a complete loss of crystallinity after exposure to moisture that
would considerably limit their industrial uses. This restriction
should also hold true for the NU-100 and UTSA-20 due to their
structural analogies to Cu-BTC in terms of the secondary
building units (SBU). Further, in practical applications, the
working capacity, defined as the difference in the capacities
between the adsorption and desorption (1 bar was chosen here)
pressures, is another crucial criteria for evaluating the perfor-
mance of a porous material for CO2 gas capture as the higher
the working capacity the higher the productivity.10 As shown
in Table 1, the resulting working capacity for UiO-68(Zr) is
very high and remains similar to its adsorption uptake (313 vs.
333 cm3 (STP) cmꢀ3). Such a behavior which is consistent with
an adequate non-rectangular shape of the corresponding CO2
adsorption isotherm10 (Fig. 2) deviates from those obtained
for another class of competitive hybrid materials, i.e. the cus
containing MOFs, for CO2 capture as for instance the CPO-
27(Ni) and the water-resistant MIL-101(Cr) which show working
capacities that are drastically decreased by B57% and 42%,
respectively, compared to their uptakes. These lower working
capacities are related to the more sudden increase of the adsorp-
tion isotherms in the domain of low pressure, in line with
much higher CO2 adsorption enthalpies for both MIL-101(Cr)
3 (a) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi,
A. Yazaydin, R. Q. Snurr, M. Oapos; Keeffe, J. Kim and O. M. Yaghi,
Science, 2010, 329, 424; (b) J. van den Bergh, C. Gucuyener, E. A. Pidko,
¨
¨
E. J. M. Hensen, J. Gascon and F. Kapteijn, Chem.–Eur. J., 2011,
17, 8832; (c) P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. J.
Flemming and K. S. Walton, Ind. Eng. Chem. Res., 2012, 51, 6513;
(d) K. A. Cychosz and A. J. Matzger, Langmuir, 2010, 26, 17198.
4 (a) E. H. Haldoupis, S. Nair and D. S. Sholl, J. Am. Chem. Soc., 2012,
¨
134, 4313; (b) O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas,
B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and
J. T. Hupp, Nat. Chem., 2010, 2, 944; (c) P. Pachfule, Y. F. Chen,
J. W. Jiang and R. Banerjee, Chem.–Eur. J., 2012, 18, 688.
´
5 (a) G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour,
´
S. Surble and I. Margiolaki, Science, 2005, 309, 2040; (b) H. K. Chae,
D. Y. Siberio-Perez, J. Kim, Y.-B. Go, M. Eddaoudi, A. J. Matzger,
M. O’ Keeffe and O. M. Yaghi, Nature, 2004, 427, 523; (c) S. Ma,
D. Sun, J. M. Simmons, C. D. Collier, D. Yuan and H.-C. Zhou,
J. Am. Chem. Soc., 2008, 130, 1012; (d) K. Koh, A. G. Wong-Foy and
A. J. Matzger, J. Am. Chem. Soc., 2009, 131, 4184.
6 (a) P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi,
L. Hamon, G. De Weireld, J.-S. Chang, D.-Y. Hong, Y. K. Hwang,
´
S. H. Jhung and G. Ferey, Langmuir, 2008, 24, 7245; (b) A. R. Millward
and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
7 (a) J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti,
S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850;
(b) A. Schaate, S. Duhnen, G. Platz, S. Lilienthal, A. M. Schneider
¨
and P. Behrens, Eur. J. Inorg. Chem., 2012, 790.
8 (a) A. D. Wiersum, E. Soubeyrand-Lenoir, Q. Yang, B. Moulin,
V. Guillerm, M. Ben Yahia, S. Bourrelly, A. Vimont, S. Miller,
C. Vagner, M. Daturi, G. Clet, C. Serre, G. Maurin and
P. L. Llewellyn, Chem.–Asian J., 2011, 6, 3270; (b) Q. Yang,
A. D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P. L. Llewellyn
and G. Maurin, J. Phys. Chem. C, 2011, 115, 13768; (c) Q. Yang,
A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre and
G. Maurin, Chem. Commun., 2011, 47, 9603.
9 F. Salles, G. Maurin, C. Serre, P. L. Llewellyn, C. Knofel,
H. J. Choi, Y. Filinchuk, L. Oliviero, A. Vimont, J. R. Long and
G. Ferey, J. Am. Chem. Soc., 2010, 132, 13782.
´
10 G. D. Pirngruber, L. Hamon, S. Bourrelly, P. L. Llewellyn, E. Lenoir,
V. Guillerm, C. Serre and T. Devic, ChemSusChem, 2012, 5, 762.
11 (a) G. Garberoglio and R. Vallauri, Microporous Mesoporous
(ꢀ45 kJ molꢀ1 6a
)
and CPO-27(Ni) (ꢀ40 kJ molꢀ1 14d
)
vs. the
value simulated here for UiO-68(Zr) (ꢀ20 kJ molꢀ1) (see ESIz).
This result also suggests that this Zr-MOF can be potentially
regenerated without requiring costly operating conditions.
In conclusion, the MOF-type UiO-67(Zr) and UiO-68(Zr) with
ultra-high porosity are predicted to be very promising materials for
the CH4 storage and CO2 capture respectively. Beyond their
exceptionally high adsorption uptakes at pressures considered in
practical applications, these materials show very good working
capacities and involve medium ranged CO2 adsorption enthalpy
values suggesting a potential regenerability under mild conditions.
Further, it has been experimentally established that these Zr-oxides
MOFs show high thermal, fair mechanical and water stabilities;
however their geometric features are still below the theoretical ones.
This latter observation suggests that an effort for optimizing the
activation protocol of such materials via for instance a modulator
approach15 deserves to be deployed in order to attain the predicted
outstanding performances prior to pave the way for their uses in
physisorption based processes.
Mater., 2008, 116, 540; (b) J. L. Mendoza-Cortes, S. S. Han,
´
H. Furukawa, O. M. Yaghi and W. A. Goddard III, J. Phys.
Chem. A, 2010, 114, 10824.
12 P. D. C. Dietzel, B. Panella, M. Hirscher, R. Bloma and
H. Fjellvag, Chem. Commun., 2006, 959.
13 (a) S. Himeno, T. Komatsu and S. Fujita, J. Chem. Eng. Data,
2005, 50, 369; (b) S. Cavenati, C. A. Grande and A. E. Rodrigues,
J. Chem. Eng. Data, 2004, 49, 1095.
14 (a) D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem.,
´
Int. Ed., 2010, 49, 5357; (b) N. Rosenbach Jr, A. Ghoufi, Deroche,
P. L. Llewellyn, T. Devic, S. Bourrelly, C. Serre, G. Ferey and
´
G. Maurin, Phys. Chem. Chem. Phys., 2010, 12, 6428;
(c) L. Hamon, E. Jolimaıtre and G. D. Pirngruber, Ind. Eng. Chem.
Res., 2010, 49, 7497; (d) P. D. C. Dietzel, V. Besikiotis and R. Blom,
J. Mater. Chem., 2009, 19, 7362; (e) S. Bourrelly, P. L. Llewellyn,
C. Serre, F. Millange, T. Loiseau and G. Ferey, J. Am. Chem. Soc.,
´
2005, 127, 13519; (f) Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang,
Z. Chen, Y. Yang, W. Zhou, M. O’ Keeffe and B. Chen, Angew.
Chem., Int. Ed., 2011, 50, 3178.
The research leading to these results has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement no. 228862. The financial
15 A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and
P. Behrens, Chem.–Eur. J., 2011, 17, 6643.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 9831–9833 9833