Page 5 of 7
ACS Catalysis
substituents. In addition, the chiral allyl dihydrosilane product can
be used for Co-catalyzed polyhydrosilylation of dicarbonyls,
Hatanaka, Y.; Goda, K.-i.; Yamashita, F.; Hiyama, T. Catalytic
asymmetric hydrosilylation of conjugated dienes: Effective control of
regio- and enantioselectivities. Tetrahedron Lett. 1994, 35, 7981-7982. (d)
Marinetti, A.; Ricard, L. Phosphetanes as Chiral Ligands for Catalytic
Asymmetric Reactions: Hydrosilylation of Olefins. Organometallics 1994,
13, 3956-3962. (e) Ohmura, H.; Matsuhashi, H.; Tanaka, M.; Kuroboshi,
M.; Hiyama, T.; Hatanaka, Y.; Goda, K.-i. Catalytic asymmetric
hydrosilylation of 1,3-dienes with difluoro(phenyl) silane. J. Organomet.
Chem. 1995, 499, 167-171. (f) Park, H. S.; Han, J. W.; Shintani, R.;
Hayashi, T. Asymmetric hydrosilylation of cyclohexa-1,3-diene with
trichlorosilane by palladium catalysts coordinated with chiral
phosphoramidite ligands. Tetrahedron: Asymmetry 2013, 24, 418-420.
1
2
3
4
5
6
7
8
9
thereby
offering
an
efficient
approach
to
novel
polyorganosiloxanes containing chiral, reactive allylic groups as
side chains, which are expected to undergo further alkene
functionalization and hold promise for synthesis of chiral
crosslinked networks.
EXPERIMENTAL SECTION
General Procedure for Cobalt-Catalyzed 1,2-Hydrosilylation
of Conjugated Dienes. In an Ar-filled glovebox, to a solution of
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
f (2.3 mg, 6.0 µmol) in 3.0 mL of THF, conjugated dienes 3 (0.3
mmol, 1.0 equiv) and ArSiH (0.6 mmol, 2.0 equiv) were added.
After the solution was cooled to -30 ºC, a solution (1.0 M in THF)
of NaBEt H (18 µL, 18.0 µmol) was slowly added. The reaction
(3) (a) Parker, S. E.; Börgel, J.; Ritter, T. 1,2-Selective Hydrosilylation of
Conjugated Dienes. J. Am. Chem. Soc. 2014, 136, 4857-4860. (b)
Greenhalgh, M. D.; Frank, D. J.; Thomas, S. P. Iron-Catalysed Chemo-,
Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using
a Bench-Stable Iron(II) Pre-Catalyst. Adv. Synth. Catal. 2014, 356,
3
3
mixture was stirred for 12 h at RT and then was quenched by
exposing the solution to air. The resulting solution was
concentrated in vacuum and the residue was purified by
chromatography on silica gel eluting with ethyl acetate/petroleum
ether to give the product 4.
5
84-590. (c) Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. A
Highly Chemoselective Cobalt Catalyst for the Hydrosilylation of Alkenes
using Tertiary Silanes and Hydrosiloxanes. ACS Catal. 2016, 6,
3
589-3593. (d) Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V.
Control of Selectivity through Synergy between Catalysts, Silanes, and
Reaction Conditions in Cobalt-Catalyzed Hydrosilylation of Dienes and
Terminal Alkenes. ACS Catal. 2017, 7, 2275-2283.
ASSOCIATED CONTENT
(4) (a) Hu, M.; He, Q.; Fan, S.; Wang, Z.; Liu, L.; Mu, Y.; Peng, Q.; Zhu,
S. Ligands with 1,10-phenanthroline scaffold for highly regioselective
iron-catalyzed alkene hydrosilylation. Nat. Commun. 2018, 9, 221, DOI:
10.1038/s41467-017-02472-6. (b) Sang, H. L.; Yu, S.; Ge, S.
AUTHOR INFORMATION
Corresponding Author
Cobalt-catalyzed
,2-hydrosilylation of conjugated dienes. Chem. Sci. 2018, 9, 973-978.
(5) (a) Panek, J. S.; Yang, M. Diastereoselective additions of chiral
regioselective
stereoconvergent
Markovnikov
Notes
The authors declare no competing financial interest.
1
(E)-crotylsilanes to -alkoxy and -alkoxy aldehydes. A one-step,
silicon-directed tetrahydrofuran synthesis. J. Am. Chem. Soc. 1991, 113,
9868-9870. (b) Hu, T.; Panek, J. S. Enantioselective Synthesis of the
Protein Phosphatase Inhibitor (−)-Motuporin. J. Am. Chem. Soc. 2002,
124, 11368-11378. (c) Su, Q.; Panek, J. S. Total Synthesis of
Supporting Information
Experimental procedures and characterization data. This material
is available free of charge via the Internet at http://pubs.acs.org.
(
−)-Apicularen A. J. Am. Chem. Soc. 2004, 126, 2425-2430. (d) Tinsley, J.
M.; Roush, W. R. Total Synthesis of Asimicin via Highly Stereoselective
3+2] Annulation Reactions of Substituted Allylsilanes. J. Am. Chem. Soc.
005, 127, 10818-10819. (e) Va, P.; Roush, W. R. Total Synthesis of
ACKNOWLEDGMENTS
[
2
Financial support was provided by the Ministry of Science and
Technology of China (2016YFA0202900, 2015CB856600),
NSFC (21825109, 21732006, 21432011, 21602236), and Chinese
Academy of Sciences (XDB20000000, QYZDB-SSW-SLH016),
and Science and Technology Commission of Shanghai
Municipality (17JC1401200).
Amphidinolide E. J. Am. Chem. Soc. 2006, 128, 15960-15961. (f)
Binanzer, K.; Fang, G. Y.; Aggarwal, V. K. Asymmetric Synthesis of
Allylsilanes by the Borylation of Lithiated Carbamates: Formal Total
Synthesis of (−)-DecarestrictineꢀD. Angew. Chem. Int. Ed. 2010, 49,
4264-4268. (g) Wu, J.; Pu, Y.; Panek, J. S. Divergent Synthesis of
Functionalized Carbocycles through Organosilane-Directed Asymmetric
Alkyne–Alkene Reductive Coupling and Annulation Sequence. J. Am.
Chem. Soc. 2012, 134, 18440-18446.
(6) (a) Hayashi, T.; Konishi, M.; Ito, H.; Kumada, M. Optically active
allylsilanes. 1. Preparation by palladium-catalyzed asymmetric Grignard
cross-coupling and anti stereochemistry in electrophilic substitution
reactions. J. Am. Chem. Soc. 1982, 104, 4962-4963. (b) Hayashi, T.;
Konishi, M.; Kumada, M. Optically active allylsilanes. 2. High
stereoselectivity in asymmetric reaction with aldehydes producing
homoallylic alcohols. J. Am. Chem. Soc. 1982, 104, 4963-4965. (c)
Hofstra, J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S. E. Synthesis of
Enantioenriched Allylic Silanes via Nickel-Catalyzed Reductive
Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 139-142.
(7) (a) Schmidtmann, E. S.; Oestreich, M. Mechanistic insight into
copper-catalysed allylic substitutions with bis(triorganosilyl) zincs.
Enantiospecific preparation of -chiral silanes. Chem. Commun. 2006,
3643-3645. (b) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda,
A. H. Enantioselective Synthesis of Allylsilanes Bearing Tertiary and
Quaternary Si-Substituted Carbons through Cu-Catalyzed Allylic
Alkylations with Alkylzinc and Arylzinc Reagents. Angew. Chem. Int. Ed.
2007, 46, 4554-4558. (c) Delvos, L. B.; Vyas, D. J.; Oestreich, M.
Asymmetric Synthesis of a-iral Allylic Silanes by Enantioconvergent
g-selective Copper(I)‐Catalyzed Allylic Silylation. Angew. Chem. Int. Ed.
2013, 52, 4650-4653. (d) Takeda, M.; Shintani, R.; Hayashi, T.
Enantioselective Synthesis of a-Tri- and a -Tetrasubstituted Allylsilanes
by Copper-Catalyzed Asymmetric Allylic Substitution of Allyl Phosphates
with Silylboronates. J. Org. Chem, 2013, 78, 5007-5017.
REFERENCES
(1) For examples of 1,4-addition with Si-added to the terminal carbon: (a)
Lappert, M. F.; Nile, T. A.; Takahashi, S. Homogeneous catalysis: II.
ziegler systems as catalysts for hydrosilylation. J. Organomet. Chem. 1974,
7
2, 425-439. (b) Gustafsson, M.; Frejd, T. Regioselectivity in the rhodium
catalysed 1,4-hydrosilylation of isoprene. Aspects on reaction conditions
and ligands. J. Organomet. Chem. 2004, 689, 438-443. (c) Hilt, G.; Lüers,
S.; Schmidt, F. Cobalt(I)-Catalyzed Diels-Alder, 1,4-Hydrovinylation and
1
,4-Hydrosilylation Reactions of Non-Activated Starting Materials on a
Large Scale. Synthesis 2004, 634-638. (d) Wu, J. Y.; Stanzl, B. N.; Ritter,
T. A Strategy for the Synthesis of Well-Defined Iron Catalysts and
Application to Regioselective Diene Hydrosilylation. J. Am. Chem. Soc.
2
010, 132, 13214-13216. (e) Pop, R.; Cui, J. L.; Adriaenssens, L.; Comte,
V.; Le Gendre, P. [Me C(C TiMe ]: An Open-Bent Titanocene
Catalyst for the Hydrosilylation of Bulky 1,3-Dienes. Synlett 2011,
79-683. (f) Srinivas, V.; Nakajima, Y.; Ando, W.; Sato, K.; Shimada, S.
Bis(acetylacetonato) Ni(II)/NaBHEt -catalyzed hydrosilylation of
,3-dienes, alkenes and alkynes. J. Organomet. Chem. 2016, 809, 57-62.
(2) For asymmetric 1,4-addition with H-added to the terminal carbon: (a)
2
5
H
4
)
2
2
6
3
1
Han, J. W.; Hayashi, T. Palladium-catalyzed asymmetric hydrosilylation
of 1,3-dienes. Tetrahedron: Asymmetry 2010, 21, 2193-2197, and
references therein. (b) Okada, T.; Morimoto, T.; Achiwa, K. Asymmetric
Hydrosilylation of Cyclopentadiene and Styrene with Chlorosilanes
Catalyzed
by
Palladium
Complexes
of
Chiral
(-N-Sulfonylaminoalkyl)phosphines. Chem. Lett. 1990, 19, 999-1002. (c)
ACS Paragon Plus Environment